Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Moving object detection zone using a block-based background model

Background modelling is a critical case for background-subtraction-based approaches and also for a wide range of applications. The background generation becomes difficult when the scene is complex or an object stays for a long time in the scene. Here, the authors propose a block-based background initialisation, using the sum of absolute difference (SAD), and modelling, using a block-based entropy evaluation, with a low computational cost which making them feasible for embedded platform. In general, many background-subtraction approaches are sensitive to sudden illumination change in the scene and cannot update the background image in scenes. The proposed background modelling approach analyses the illumination change problem. The moving object detection mask is developed using a threshold selected by computing the mean of the SAD between the blocks background and the blocks of the current frame. From the qualitative and quantitative results obtained by the authors approach compared with some existing methods, the authors approach is effective for background generation and moving objects detection.

References

    1. 1)
      • 14. Xu, X., Xu, S., Jin, L.,, et al: ‘Characteristic analysis of Otsu threshold and its applications’, Pattern Recogn. Lett., 2011, 32, pp. 956961.
    2. 2)
      • 5. Cheng, F.-C., Huang, S.-C., Ruan, S.-J.: ‘Illumination-sensitive background modeling approach for accurate moving object detection’, IEEE Trans. Broadcast., 2011, 57, (4), pp. 794801.
    3. 3)
      • 12. Chen, Y.-T, Chen, C.-S, Huang, C.-R., et al: ‘Efficient hierarchical method for background subtraction’, Pattern Recognit., 2007, 40, (10), pp. 27062715.
    4. 4)
      • 23. Wu, Y., He, X., Nguyen, T.Q.: ‘Moving object detection with a freely moving camera via background motion subtraction’, IEEE Trans. Circuits Syst. Video Technol., 2017, 27, (2), pp. 236248.
    5. 5)
      • 27. Cheng, F.-C., Chen, B.-H., Huang, S.-C.: ‘A background model re-initialization method based on sudden luminance change detection’, Eng. Appl. Artif. Intell., 2015, 38, pp. 138146.
    6. 6)
      • 6. Wang, Y., Lu, Q., Wang, D., et al: ‘Compressive background modeling for foreground extraction’, J. Electr. Comput. Eng., 2015, 2015, p. 13.
    7. 7)
      • 2. Mustafa, O., Umut, D.: ‘Centre of mass model – a novel approach to background modelling for segmentation of moving objects’, Image Vis. Comput., 2007, 25, (8), pp. 13651376.
    8. 8)
      • 20. Elharrouss, O., Moujahid, D., Tairi, H.: ‘Motion detection based on the combining of the background subtraction and the structure–texture decomposition’, Optik-Int. J. Light Electron Optics, 2015, 126, (24), pp. 59925997.
    9. 9)
      • 30. Paul, M.: ‘Efficient video coding using optimal compression plane and background modeling’, IET Image Process., 2012, 6, (9), pp. 13111318.
    10. 10)
      • 1. Shoushtarian, B., Ghasem-Aghaee, N.: ‘A practical approach to real-time dynamic background generation based on a temporal median filter’, J. Sci. Islamic Repub. Iran, 2003, 14, (4), p. 35162.
    11. 11)
      • 18. Han, H., Zhu, J., Liao, S.,, et al: ‘Moving object detection revisited: speed and robustness’, IEEE Trans. Circuits Syst. Video Technol., 2015, 25, (6), pp. 910921.
    12. 12)
      • 31. Faro, A., Giordano, D., Spampinato, C.: ‘Adaptive background modeling integrated with luminosity sensors and occlusion processing for reliable vehicle detection’, IEEE Trans. Intell. Transp. Syst., 2011, 12, (4), pp. 13981412.
    13. 13)
      • 19. Haines, T.S.F., Xiang, T.: ‘Background subtraction with dirichletProcess mixture models’, IEEE Trans. Pattern Anal. Mach. Intellig., 2014, 36, (4), pp. 670683..
    14. 14)
      • 10. Reddy, V., Sanderson, C., Sanin, A., et al: ‘Adaptive patch-based background modelling for improved foreground object segmentation and tracking’. 2010 Seventh IEEE Int. Conf. on Advanced Video and Signal Based Surveillance (AVSS), 2010, pp. 172179.
    15. 15)
      • 35. Vese, L.A., Osher, S.J.: ‘Modeling textures with total variation minimization and oscillating patterns in image processing’, J. Sci. Comput., 2003, 19, (1–3), pp. 553572..
    16. 16)
      • 9. Liao, S., Zhao, G., Kellokumpu, V., et al: ‘Modeling pixel process with scale invariant local patterns for background subtraction in complex scenes’. 2010 IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), IEEE, 2010, pp. 13011306.
    17. 17)
      • 25. Cheng, F.-C., Chen, B.-H., Huang, S.-C.: ‘A hybrid background subtraction method with background and foreground candidates detection’, ACM Trans. Intellig. Syst. Technol. (TIST), 2015, 7, (1), p. 7.
    18. 18)
      • 8. Ghaeminia, M.H., Shokouhi, S.B.: ‘Adaptive background model for moving objects based on PCA’. 2010 6th Iranian Machine Vision and Image Processing (MVIP), 2010, pp. 14.
    19. 19)
      • 21. Harrouss, O.E., Moujahid, D., Tairi, H.: ‘Motion detection based on the combining of the background subtraction and spatial color information’. Intelligent Systems and Computer Vision (ISCV), 2015, 2015, pp. 14.
    20. 20)
      • 13. Rais, N.B., Hanif, M.S., Taj, I.A.: ‘Adaptive thresholding technique for document image analysis’. 8th Int. Multitopic Conf., 2004, pp. 6166.
    21. 21)
      • 28. Zhao, Z., Zhang, X., Fang, Y.: ‘Stacked multilayer self-organizing map for background modeling’, IEEE Trans. Image Process., 2015, 24, (9), pp. 28412850.
    22. 22)
      • 33. Do, B.-H., Huang, S.-C.: ‘Dynamic background modeling based on radial basis function neural networks for moving object detection’. 2011 IEEE Int. Conf. on Multimedia and Expo (ICME), 2011, pp. 14.
    23. 23)
      • 7. Lin, D., Cao, D., Zeng, H.: ‘Improving motion state change object detection by using block background context’. 2014 14th UK Workshop on Computational Intelligence (UKCI), 2014, pp. 16.
    24. 24)
      • 15. Gao, Z., Cheong, L.-F., Wang, Y.-X.: ‘Block-sparse RPCA for salient motion detection’, IEEE Trans. Pattern Anal. Mach. Intell., 2014, 36, (10), pp. 19751987.
    25. 25)
      • 3. Akula, A., Khanna, N., Ghosh, R., et al: ‘Adaptive contour-based statistical background subtraction method for moving target detection in infrared video sequences’, Infrared Phys. Technol., 2014, 63, pp. 103109.
    26. 26)
      • 11. Huang, S.-C., Cheng, F.-C.: ‘Motion detection with pyramid structure of background model for intelligent surveillance systems’, Eng. Appl. Artif. Intell., 2012, 25, pp. 13381348.
    27. 27)
      • 26. Luo, Y., Guan, Y.P.: ‘Motion objects segmentation based on structural similarity background modelling’, IET Comput. Vision, 2015, 9, (4), pp. 476488.
    28. 28)
      • 4. Manzanera, A., Richefeu, J.C.: ‘A new motion detection algorithm based on Σ–Δ background estimation’, Pattern Recognit. Lett., 2007, 28, (3), pp. 320328.
    29. 29)
      • 17. Laumer, M., Amon, P., Hutter, A., et al: ‘Compressed domain moving object detection by spatio-temporal analysis of H’. 264/AVC Syntax Elements Picture Coding Symposium (PCS), 2015, 2015, pp. 282286.
    30. 30)
      • 16. Yeh, C.-H., Lin, C.-Y., Muchtar, K., et al: ‘Real-time background modeling based on a multi-level texture description’, Inf. Sci., 2014, 269, pp. 106127.
    31. 31)
      • 22. EL.Harrouss, O., Moujahid, D., Elkaitouni, S.E.,, et al: ‘Moving objects detection based on thresholding operations for video surveillance systems’. 2015 IEEE/ACS 12th Int. Conf. of Computer Systems and Applications (AICCSA), Marrakech.
    32. 32)
      • 24. Zhou, Z., Jin, Z.: ‘Two-dimension principal component analysis-based motion detection framework with subspace update of background’, IET Comput. Vision, 2016, 10, (6), pp. 603612..
    33. 33)
      • 29. Chen, B.-H., Huang, S.-C.: ‘Probabilistic neural networks based moving vehicles extraction algorithm for intelligent traffic surveillance systems’, Inf. Sci., 2015, 299, pp. 283295.
    34. 34)
      • 32. Huang, S.-C.: ‘An advanced motion detection algorithm with video quality analysis for video surveillance systems’, IEEE Trans. Circuits Syst. Video Technol., 2011, 21, (1), pp. 114.
    35. 35)
      • 34. Colmenarejo, A., Escudero-vinolo, M., Bescos, J.: ‘Class-driven Bayesian background modeling for video object segmentation’, Electron. Lett., 2011, 47, (18), pp. 10231024.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cvi.2017.0136
Loading

Related content

content/journals/10.1049/iet-cvi.2017.0136
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address