access icon free Improvement of angular velocity and position estimation in gyro-free inertial navigation based on vision aid equipment

In conventional navigation systems, inertial sensors consist of accelerometers and gyroscopes. These sensors suffer from in-built errors, accumulated drift and high-level noise sensitivity. The accurate gyroscopes are expensive and not suitable in cost-effective applications. To minimise such disadvantages, one solution is the combination of inertial sensors with different aiding sensors. To lower the cost, utilisation of redundant accelerometer structure as gyro-free inertial measurement unit (GFIMU) has been proposed. In this study, Gyro-Free navigation errors using four tri-axial accelerometers are illustrated. Compensation of errors in terms of angular velocity and position estimation is verified based on adding a simple gyroscope, inexpensive stereo cameras as well as creating an easy to use topological map. The topological map is easily created by means of scale-invariant feature transform method. The estimation of angular velocity is corrected on the basis of fusing the measurements from GFIMU and a simple gyroscope using unscented Kalman filter. The correction of position is performed by comparing the estimated position from GFIMU and observation of stereo cameras together with topological map. The results of the research show that the collaboration of GFIMU, stereo cameras and simple gyroscope will improve the robustness and accuracy of navigation, significantly.

Inspec keywords: angular velocity measurement; position measurement; compensation; inertial navigation; Kalman filters; gyroscopes; image sensors; nonlinear filters; transforms; cameras

Other keywords: position estimation; redundant accelerometer structure; stereo camera; gyrofree inertial measurement unit; angular velocity estimation; vision aid equipment; stability; unscented Kalman filter; gyroscope; GFIMU; gyrofree inertial navigation system; triaxial accelerometer; scale-invariant feature transform method; inertial sensor

Subjects: Velocity, acceleration and rotation measurement; Spatial variables measurement; Integral transforms; Function theory, analysis; Image sensors; Spatial variables measurement; Velocity, acceleration and rotation measurement

References

    1. 1)
      • 7. Lu, J., Lin, P.: ‘State derivation of a 12-axis gyroscope-free inertial measurement unit’, Sensors, 2011, 11, (3), pp. 31453162.
    2. 2)
      • 1. Sales, D. O., Correa, D. O., Fernandes, L. C., et al: ‘Adaptive finite state machine based visual autonomous navigation system’, Eng. Appl. Artif. Intell., 2014, 29, pp. 152162.
    3. 3)
      • 5. Krishnan, V.: ‘Measurement of angular velocity and linear acceleration using linear accelerometers’, J. Franklin Inst., 1965, 280, (4), pp. 307315.
    4. 4)
      • 15. Zhang, Z.: ‘A flexible new technique for camera calibration’, IEEE Trans. Pattern Anal. Mach. Intell., 2001, 22, (11), pp. 13301334.
    5. 5)
      • 21. Simon, D.: ‘Optimal state estimation, Kalman, H-infinity and nonlinear approaches’ (John Wiley & Sons, 2006, 3rd edn.), pp. 191199.
    6. 6)
      • 4. Kortenkamp, D., Bonasso, R., Murphy, R.: ‘AI-based mobile robots: case studies of successful robot systems’ (The MIT Press, 1991), pp. 125140.
    7. 7)
      • 16. Dehghani, M., Ahmadi, M., Khayatian, A., et al: ‘Vision-based calibration of a hexa parallel robot’, Ind. Robot, Int. J., 2014, 41, (3), pp. 296310.
    8. 8)
      • 17. Cardou, P., Angeles, J.: ‘Estimating the angular velocity of a rigid body moving in the plane from tangential and centripetal acceleration measurements’, Multibody Syst. Dyn., 2008, 19, (4), pp. 383406.
    9. 9)
      • 6. Williams, T., Pahadia, A., Petovello, M., et al: ‘using accelerometer configuration to improve the performance of MEMS IMU: feasibility study with a pedestrian navigation application’. Proc. ION, Georgia, 2009.
    10. 10)
      • 24. Kottas, G., Hesch, J. A., Bowman, S. L., et al: ‘On the consistency of vision-aided inertial navigation’, Exp. Robot., 2013, 88, pp. 303317.
    11. 11)
      • 11. Jones, S. D., Andersen, I.: ‘Appearance based processes for visual navigation’. Proc. Fifth Int. Symp. Intelligent Robotic Systems (IEEE IROS), France, 1997.
    12. 12)
      • 18. Zappa, B., Legnani, G., Bogert, A., et al: ‘On the number and placement of accelerometers for angular velocity and acceleration determination’, J. Dyn. Syst. Meas. Control, 2001, 123, (3), pp. 552554.
    13. 13)
      • 28. Azeem, A., Sharif, M., Shah, J., et al: ‘Hexagonal scale invariant feature transform (H-SIFT) for facial feature extraction’, J. Appl. Res. Technol., 2015, 13, (3), pp. 402408.
    14. 14)
      • 12. Matsumoto, Y., Inaba, M., Inoue, H.: ‘View-based navigation using an omni-view sequence in a corridor environment’, Vis. Appl., 2003, 14, (2), pp. 121128.
    15. 15)
      • 27. Alhwarin, F., Wang, D., Durrant, R., et al: ‘Improved SIFT-features matching for object recognition’. BCS Int. Academic Conf. Visions of Computer Science, England, 2008.
    16. 16)
      • 2. Corke, P., Lobo, J., Dias, J.: ‘An introduction to inertial and visual sensing’, Int. J. Robot. Res., 2007, 26, (6), pp. 519535.
    17. 17)
      • 3. Tian, Z., Zhang, L., Chen, W.: ‘Improved algorithm for navigation of rescue robots in underground mines’, Comput. Electr. Eng., 2013, 39, (4), pp. 10881094.
    18. 18)
      • 14. Jefferson, R., Souza, N., Pessin, G., et al: ‘Vision-based waypoint following using templates and artificial neural networks’, Neuro Comput., 2013, 107, pp. 7786.
    19. 19)
      • 9. Liu, C., Zhanga, S., Yua, S., et al: ‘Design and analysis of Gyro-free inertial measurement units with different configurations’, Sens. Actuators, 2014, 214, pp. 175186.
    20. 20)
      • 26. Petkov, P., Slavov, T.: ‘Stochastic modelling of MEMS’, Inertial Sens., 2010, 10, (2), pp. 121134.
    21. 21)
      • 23. Sadaghzadeh, N., Poshtan, J., Wagner, A., et al: ‘Cascaded Kalman and particle filters for photogrammetry based gyroscope drift and robot estimation’, ISA Trans., 2013, 53, (2), pp. 524532.
    22. 22)
      • 13. Maohai, L., Han, W., Lining, S., et al: ‘Robust omnidirectional mobile robot topological navigation system using omnidirectional vision’, Eng. Appl. Artif. Intell., 2013, 26, (8), pp. 19421952.
    23. 23)
      • 10. Xu, H., Shen, Y. P.: ‘Target tracking control of mobile robot in diversified manoeuvre modes with a low cost embedded vision system’, Ind. Robot, Int. J., 2013, 40, (3), pp. 275287.
    24. 24)
      • 19. Wang, X., Cui, N., Guo, J.: ‘INS/VisNav/GPS relative navigation system for UAV’, Aerosp. Sci. Technol., 2013, 28, (1), pp. 242248.
    25. 25)
      • 8. Schopp, P., Klingbeil, L., Peters, C., et al: ‘Design, geometry evaluation and calibration of a gyroscope-free inertial measurement unit’, Sens. Actuators, 2010, 162, (2), pp. 379387.
    26. 26)
      • 22. O'Donnell, C. F.: ‘Inertial navigation: analysis and design’ (McGraw-Hill, 2007), pp. 5364.
    27. 27)
      • 25. Chen, L., Wang, S., McDonald-Maier, K., et al: ‘Towards autonomous localization and mapping of AUVs: a survey’, Int. J. Intell. Unmanned Syst., 2013, 2, (1), pp. 97120.
    28. 28)
      • 20. Park, S., Tan, C., Park, J.: ‘A scheme for improving the performance of a gyroscope-free inertial measurement unit’, Sens. Actuators, 2005, 121, (2), pp. 410420.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cvi.2017.0128
Loading

Related content

content/journals/10.1049/iet-cvi.2017.0128
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading