Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Automatic underwater moving object detection using multi-feature integration framework in complex backgrounds

Moving object detection in a video sequence is one of the leading tasks of marine scientists to explore and monitor applications. The videos acquired in the underwater environment are usually degraded due to the physical properties of water medium as compared with images acquired in the air and that affects the performance of feature descriptors. In this study, a new feature descriptor, multi-frame triplet pattern (MFTP) is proposed for underwater moving object detection. The MFTP encodes the structure of local region based on three sets of frames, which are calculated by considering local differences in intensities between the centre pixel and its nine neighbours. Furthermore, the robustness of the proposed method is increased by integrating it with colour and motion features. The performance of the proposed framework is tested by conducting seven experiments on Fish4Knowledge database for underwater moving object detection applications. The results of the proposed method show a significant improvement as compared with state-of-the-art techniques in terms of their evaluation measures.

References

    1. 1)
      • 3. Stauffer, C., Grimson, W.E.L.: ‘Adaptive background mixture models for real-time tracking’. IEEE Computer Society Conf. Computer Vision and Pattern Recognition, Fort Collins, CO, USA, 1999.
    2. 2)
      • 13. Ojala, T., Pietikainen, M., Maenpaa, T.: ‘Multiresolution gray-scale and rotation invariant texture classification with local binary patterns’, IEEE Trans. Pattern Anal. Mach. Intell., 2002, 24, (7), pp. 971987.
    3. 3)
      • 25. Noh, S., Jeon, M.: ‘A new framework for background subtraction using multiple cues’, in Lee, K.M., Matsushita, Y., Rehg, J.M., et al (Eds.): ‘Computer vision’ (Springer Berlin, Heidelberg, 2013), pp. 493506.
    4. 4)
      • 8. Guo, J.M., Liu, Y.F., Hsia, C.H., et al: ‘Hierarchical method for foreground detection using codebook model’, IEEE Trans. Circuits Syst. Video Technol., 2011, 21, (6), pp. 804815.
    5. 5)
      • 14. Tan, X., Triggs, B.: ‘Enhanced local texture feature sets for face recognition under difficult lighting conditions’, IEEE Trans. Image Process., 2010, 19, (6), pp. 16351650.
    6. 6)
      • 9. Zaharescu, A., Jamieson, M.: ‘Multi-scale multi-feature codebook-based background subtraction’. IEEE Int. Conf. Computer Vision Workshops (ICCV Workshops), Barcelona, Spain, 2011.
    7. 7)
      • 7. Kim, K., Chalidabhongse, T.H., Harwood, D., et al: ‘Real-time foreground-background segmentation using codebook model’, Real-Time Imaging, 2005, 11, (3), pp. 172185.
    8. 8)
      • 16. Chen, Y., Wang, J., Xu, M., et al: ‘A unified model sharing framework for moving object detection’, Signal Process., 2016, 124, pp. 7280.
    9. 9)
      • 18. Tian, Z., Zheng, N., Xue, J., et al: ‘Video object segmentation with shape cue based on spatiotemporal superpixel neighbourhood’, IET Comput. Vis., 2014, 8, (1), pp. 1625.
    10. 10)
      • 6. Sheikh, Y., Shah, M.: ‘Bayesian modeling of dynamic scenes for object detection’, IEEE Trans. Pattern Anal. Mach. Intell., 2005, 27, (11), pp. 17781792.
    11. 11)
      • 17. Zhang, X., Yang, J.: ‘The analysis of the color similarity problem in moving object detection’, Signal Process., 2009, 89, (4), pp. 685691.
    12. 12)
      • 10. Wang, Q., Fang, J., Yuan, Y.: ‘Adaptive road detection via context-aware label transfer’, Neurocomputing, 2015, 158, (Supplement C), pp. 174183.
    13. 13)
      • 20. Zhang, B., Gao, Y., Zhao, S., et al: ‘Kernel similarity modeling of texture pattern flow for motion detection in complex background’, IEEE Trans. Circuits Syst. Video Technol., 2011, 21, (1), pp. 2938.
    14. 14)
      • 28. Braham, M., Droogenbroeck, M.V.: ‘Deep background subtraction with scene-specific convolutional neural networks’. 2016 Int. Conf. Systems, Signals and Image Processing (IWSSIP), Bratislava, Slovakia, 2016.
    15. 15)
      • 37. Sobral, A.: ‘BGSLibrary: an Opencv C++ background subtraction library’. IX Workshop De Visão Computacional (WVC'2013), Botafogo, Brazil, June 2013.
    16. 16)
      • 39. Baf, F.E., Bouwmans, T., Vachon, B.: ‘Fuzzy integral for moving object detection’. 2008 IEEE Int. Conf. Fuzzy Systems, Hong Kong, China, 2008.
    17. 17)
      • 5. Wang, Y., Liang, Y., Zhang, L., et al: ‘Adaptive spatiotemporal background modelling’, IET Comput. Vis., 2012, 6, (5), pp. 451458.
    18. 18)
      • 21. Han, H., Zhu, J., Liao, S., et al: ‘Moving object detection revisited: speed and robustness’, IEEE Trans. Circuits Syst. Video Technol., 2015, 25, (6), pp. 910921.
    19. 19)
      • 19. Lin, L., Xu, Y., Liang, X., et al: ‘Complex background subtraction by pursuing dynamic spatio-temporal models’, IEEE Trans. Image Process., 2014, 23, (7), pp. 31913202.
    20. 20)
      • 40. Zhong, Z., Zhang, B., Lu, G., et al: ‘An adaptive background modeling method for foreground segmentation’, IEEE Trans. Intell. Transp. Syst., 2017, 18, (5), pp. 11091121.
    21. 21)
      • 1. Schettini, R., Corchs, S.: ‘Underwater image processing: state of the art of restoration and image enhancement methods’, EURASIP J. Adv. Signal Process., 2010, 2010, (1), pp. 114.
    22. 22)
      • 29. Luo, Y., Guan, Y.P.: ‘Motion objects segmentation based on structural similarity background modelling’, IET Comput. Vis., 2015, 9, (4), pp. 476488.
    23. 23)
      • 11. Yuan, Y., Xiong, Z., Wang, Q.: ‘An incremental framework for video-based traffic sign detection, tracking, and recognition’, IEEE Trans. Intell. Transp. Syst., 2017, 18, (7), pp. 19181929.
    24. 24)
      • 32. Lin, Y., Tong, Y., Cao, Y., et al: ‘Visual-attention-based background modeling for detecting infrequently moving objects’, IEEE Trans. Circuits Syst. Video Technol., 2017, 27, (6), pp. 12081221.
    25. 25)
      • 35. Goyette, N., Jodoin, P.M., Porikli, F., et al: ‘Changedetection.Net: a new change detection benchmark dataset’. 2012 IEEE Computer Society Conf. Computer Vision and Pattern Recognition, Providence, RI, USA, 2012.
    26. 26)
      • 12. Zhang, S., Li, N., Cheng, X., et al: ‘Adaptive object detection by implicit sub-class sharing features’, Signal Process., 2013, 93, (6), pp. 14581470.
    27. 27)
      • 36. Otsu, N.: ‘A threshold selection method from gray-level histograms’, IEEE Trans. Syst. Man Cybern., 1979, 9, (1), pp. 6266.
    28. 28)
      • 30. Dawoud, A., Netchaev, A.: ‘Fusion of visual cues of intensity and texture in Markov random fields image segmentation’, IET Comput. Vis., 2012, 6, (6), pp. 603609.
    29. 29)
      • 15. Liao, S., Zhao, G., Kellokumpu, V., et al: ‘Modeling pixel process with scale invariant local patterns for background subtraction in complex scenes’. IEEE Computer Vision and Pattern Recognition (CVPR), San Francisco, CA, USA, 2010.
    30. 30)
      • 34. Kavasidis, I., Palazzo, S., Salvo, R.D., et al: ‘An innovative web-based collaborative platform for video annotation’, Multimedia Tools Appl., 2014, 70, (1), pp. 413432.
    31. 31)
      • 31. Zhang, Y., Wang, X., Qu, B.: ‘Three-frame difference algorithm research based on mathematical morphology’, Procedia Eng., 2012, 29, pp. 27052709.
    32. 32)
      • 26. Chiranjeevi, P., Sengupta, S.: ‘Neighborhood supported model level fuzzy aggregation for moving object segmentation’, IEEE Trans. Image Process., 2014, 23, (2), pp. 645657.
    33. 33)
      • 24. St-Charles, P.L., Bilodeau, G.A., Bergevin, R.: ‘Flexible background subtraction with self-balanced local sensitivity’. IEEE Conf. Computer Vision and Pattern Recognition Workshops, Columbus, OH, USA, 2014.
    34. 34)
      • 38. Yao, J., Odobez, J.M.: ‘Multi-layer background subtraction based on color and texture’. 2007 IEEE Conf. Computer Vision and Pattern Recognition, Minneapolis, MN, USA, 2007.
    35. 35)
      • 22. Li, L., Jin, L., Xu, X., et al: ‘Unsupervised color–texture segmentation based on multiscale quaternion Gabor filters and splitting strategy’, Signal Process., 2013, 93, (9), pp. 25592572.
    36. 36)
      • 2. Wren, C.R., Azarbayejani, A., Darrell, T., et al: ‘Pfinder: real-time tracking of the human body’, IEEE Trans. Pattern Anal. Mach. Intell., 1997, 19, (7), pp. 780785.
    37. 37)
      • 23. Spampinato, C., Palazzo, S., Kavasidis, I.: ‘A texton-based kernel density estimation approach for background modeling under extreme conditions’, Comput. Vis. Image Underst., 2014, 122, pp. 7483.
    38. 38)
      • 4. Elgammal, A., Harwood, D., Davis, L.: ‘Non-parametric model for background subtraction’, in Vernon, D. (Ed.): ‘Computer vision’ (Springer Berlin, Heidelberg, 2000), pp. 751767.
    39. 39)
      • 27. Chiranjeevi, P., Sengupta, S.: ‘Detection of moving objects using multi-channel kernel fuzzy correlogram based background subtraction’, IEEE Trans. Cybern., 2014, 44, (6), pp. 870881.
    40. 40)
      • 33. Heikkila, M., Pietikainen, M.: ‘A texture-based method for modeling the background and detecting moving objects’, IEEE Trans. Pattern Anal. Mach. Intell., 2006, 28, (4), pp. 657662.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cvi.2017.0013
Loading

Related content

content/journals/10.1049/iet-cvi.2017.0013
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address