http://iet.metastore.ingenta.com
1887

Automatic age estimation from facial profile view

Automatic age estimation from facial profile view

For access to this article, please select a purchase option:

Buy article PDF
$19.95
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Computer Vision — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

In recent years, automatic facial age estimation has gained popularity due to its numerous applications. Much work has been done on frontal images and lately, minimal estimation errors have been achieved on most of the benchmark databases. However, in reality, images obtained in unconstrained environments are not always frontal. For instance, when conducting a demographic study or crowd analysis, one may get profile images of the face. To the best of our knowledge, no attempt has been made to estimate ages from the side-view of face images. Here the authors exploit this by using a pretrained deep residual neural network to extract features, and then utilise a sparse partial least-squares regression approach to estimate ages. Despite having less information as compared with frontal images, the results show that the extracted deep features achieve a promising performance.

References

    1. 1)
      • 1. Kaur, M., Garg, R.K., Singla, S.: ‘Analysis of facial soft tissue changes with aging and their effects on facial morphology: a forensic perspective’, Egypt. J. Forensic Sci., 2015, 5, (2), pp. 4656.
    2. 2)
      • 2. Fu, Y., Guo, G., Huang, T.: ‘Age synthesis and estimation via faces: a survey’, IEEE Trans. Pattern Anal. Mach. Intell., 2010, 32, (11), pp. 19551976.
    3. 3)
      • 3. Niu, Z., Zhou, M., Wang, L., et al: ‘Ordinal regression with multiple output CNN for age estimation’. Proc. IEEE Conf. on Computer Vision and Pattern Recognition, 2016, pp. 49204928.
    4. 4)
      • 4. Choi, S.E., Lee, Y.J., Lee, S.J., et al: ‘Age estimation using a hierarchical classifier based on global and local facial features’, Pattern Recognit., 2011, 44, (6), pp. 12621281.
    5. 5)
      • 5. Fernandez, C., Huerta, I., Prati, A.: ‘A comparative evaluation of regression learning algorithms for facial age estimation’. FFER Conjunction with ICPR, 2014.
    6. 6)
      • 6. Eidinger, E., Enbar, R., Hassner, T.: ‘Age and gender estimation of unfiltered faces’, IEEE Trans. Inf. Forensics Secur., 2014, 9, (12), pp. 21702179.
    7. 7)
      • 7. Kim, J., Han, D., Sohn, S., et al: ‘Facial age estimation via extended curvature Gabor filter’. 2015 IEEE Int. Conf. on Image Processing (ICIP), 2015, pp. 11651169.
    8. 8)
      • 8. Weng, R., Lu, J., Yang, G., et al: ‘Multi-feature ordinal ranking for facial age estimation’. 2013 Tenth IEEE Int. Conf. and Workshops on Automatic Face and Gesture Recognition (FG), 2013, pp. 16.
    9. 9)
      • 9. Han, H., Otto, C., Jain, A.K., et al: ‘Age Estimation from Face Images: Human vs. Machine Performance’, 2013.
    10. 10)
      • 10. Wang, X., Guo, R., Kambhamettu, C.: ‘Deeply-learned feature for age estimation’. 2015 IEEE Winter Conf. on Applications of Computer Vision, 2015, pp. 534541.
    11. 11)
      • 11. Liu, T., Wan, J., Yu, T., et al: ‘Age estimation based on multi-region convolutional neural network’. Chinese Conf. on Biometric Recognition, 2016, pp. 186194.
    12. 12)
      • 12. Kwon, Y.H., Lobo, V.: ‘Age classification from facial images’. Proc. IEEE Conf. Computer Vision and Pattern Recognition (CVPR-94), 1994, pp. 762767.
    13. 13)
      • 13. Ramanathan, N., Chellappa, R.: ‘Modeling age progression in young faces’. 2006 IEEE Computer Society Conf. on Computer Vision and Pattern Recognition, 2006, vol. 1, pp. 387394.
    14. 14)
      • 14. Shen, C.T., Huang, F., Lu, W.H., et al: ‘3D Age Progression Prediction in Children's Faces with a Small Exemplar-Image Set’, Journal of Information Science and Engineering, 2014, 30, (4), pp. 11311148.
    15. 15)
      • 15. Gunay, A., Nabiyev, V.V.: ‘Automatic detection of anthropometric features from facial images’. 2007 IEEE 15th Signal Processing and Communications Applications, 2007, pp. 14.
    16. 16)
      • 16. Lanitis, A., Taylor, C., Cootes, T.: ‘Toward automatic simulation of aging effects on face images’, IEEE Trans. Pattern Anal. Mach. Intell., 2002, 24, (4), pp. 442455.
    17. 17)
      • 17. Geng, X., Zhou, Z.-H., Zhang, Y., et al: ‘Learning from facial aging patterns for automatic age estimation’. Proc. 14th Annu. ACM Int. Conf. on Multimedia, 2006, p. 307.
    18. 18)
      • 18. Yan, S., Wang, H., Tang, X., et al: ‘Learning auto-structured regressor from uncertain nonnegative labels’. 2007 IEEE 11th Int. Conf. on Computer Vision, 2007, pp. 18.
    19. 19)
      • 19. Fu, Y., Xu, Y., Huang, T.S.: ‘Estimating human age by manifold analysis of face pictures and regression on aging features’. 2007 IEEE Int. Conf. on Multimedia and Expo, 2007, pp. 13831386.
    20. 20)
      • 20. Guo, G., Mu, G., Fu, Y., et al: ‘Human age estimation using bio-inspired features’. 2009 IEEE Conf. on Computer Vision and Pattern Recognition (CVPR 2009), 2009, pp. 112119.
    21. 21)
      • 21. Rothe, R., Timofte, R., Van Gool, L.: ‘Dex: deep expectation of apparent age from a single image’. Proc. IEEE Int. Conf. on Computer Vision Workshops, 2015, pp. 1015.
    22. 22)
      • 22. Liu, X., Li, S., Kan, M., et al: ‘Agenet: deeply learned regressor and classifier for robust apparent age estimation’. Proc. IEEE Int. Conf. on Computer Vision Workshops, 2015, pp. 1624.
    23. 23)
      • 23. Zhu, Y., Li, Y., Mu, G., et al: ‘A study on apparent age estimation’. Proc. IEEE Int. Conf. on Computer Vision Workshops, 2015, pp. 2531.
    24. 24)
      • 24. LeCun, Y., Bengio, Y., Hinton, G.: ‘Deep learning’, Nature, 2015, 521, (7553), pp. 436444.
    25. 25)
      • 25. Long, J., Shelhamer, E., Darrell, T.: ‘Fully convolutional networks for semantic segmentation’. Proc. IEEE Conf. on Computer Vision and Pattern Recognition, 2015, pp. 34313440.
    26. 26)
      • 26. He, K., Zhang, X., Ren, S., et al: ‘Deep residual learning for image recognition’, arXiv Prepr. arXiv1512.03385, 2015.
    27. 27)
      • 27. Azizpour, H., Sharif Razavian, A., Sullivan, J., et al: ‘From generic to specific deep representations for visual recognition’. Proc. IEEE Conf. on Computer Vision and Pattern Recognition Workshops, 2015, pp. 3645.
    28. 28)
      • 28. Oquab, M., Bottou, L., Laptev, I., et al: ‘Learning and transferring mid-level image representations using convolutional neural networks’. Proc. IEEE Conf. on Computer Vision and Pattern Recognition, 2014, pp. 17171724.
    29. 29)
      • 29. Yosinski, J., Clune, J., Bengio, Y., et al: ‘How transferable are features in deep neural networks?’. Advances in Neural Information Processing Systems, 2014, pp. 33203328.
    30. 30)
      • 30. Razavian, A.S., Azizpour, H., Sullivan, J., et al: ‘CNN features off-the-shelf: an astounding baseline for recognition’. Proc. IEEE Conf. on Computer Vision and Pattern Recognition Workshops, 2014, pp. 806813.
    31. 31)
      • 31. Sermanet, P., Eigen, D., Zhang, X., et al: ‘Overfeat: integrated recognition, localization and detection using convolutional networks’, arXiv Prepr. arXiv1312.6229, 2013.
    32. 32)
      • 32. Karpathy, A., Toderici, G., Shetty, S., et al: ‘Large-scale video classification with convolutional neural networks’. Proc. IEEE Conf. on Computer Vision and Pattern Recognition, 2014, pp. 17251732.
    33. 33)
      • 33. Babenko, A., Slesarev, A., Chigorin, A., et al: ‘Neural codes for image retrieval’. European Conf. on Computer Vision, 2014, pp. 584599.
    34. 34)
      • 34. Shin, H.-C., Roth, H.R., Gao, M., et al: ‘Deep convolutional neural networks for computer-aided detection: CNN architectures, dataset characteristics and transfer learning’, IEEE Trans. Med. Imaging, 2016, 35, (5), pp. 12851298.
    35. 35)
      • 35. Athiwaratkun, B., Kang, K.: ‘Feature representation in convolutional neural networks’, arXiv Prepr. arXiv1507.02313, 2015.
    36. 36)
      • 36. Srivastava, R.K., Greff, K., Schmidhuber, J.: ‘Highway networks’, arXiv Prepr. arXiv1505.00387, 2015.
    37. 37)
      • 37. Russakovsky, O., Deng, J., Su, H., et al: ‘Imagenet large scale visual recognition challenge’, Int. J. Comput. Vis., 2015, 115, (3), pp. 211252.
    38. 38)
      • 38. Chun, H., Keleş, S.: ‘Sparse partial least squares regression for simultaneous dimension reduction and variable selection’, J. R. Stat. Soc. Ser. B: Stat. Methodol., 2010, 72, (1), pp. 325.
    39. 39)
      • 39. De Jong, S.: ‘SIMPLS: an alternative approach to partial least squares regression’, Chemom. Intell. Lab. Syst., 1993, 18, (3), pp. 251263.
    40. 40)
      • 40. Huang, T.S.: ‘Human age estimation using bio-inspired features’. 2009 IEEE Conf. on Computer Vision and Pattern Recognition, June 2009, pp. 112119.
    41. 41)
      • 41. Panis, G., Lanitis, A., Tsapatsoulis, N., et al: ‘Overview of research on facial ageing using the FG-NET ageing database’, IET Biometrics, 2016, 5, (2), pp. 3746.
    42. 42)
      • 42. Vieira, T.F., Bottino, A., Laurentini, A., et al: ‘Detecting siblings in image pairs’, Vis. Comput., 2014, 30, (12), pp. 13331345.
    43. 43)
      • 43. Dalrymple, K.A., Gomez, J., Duchaine, B.: ‘The Dartmouth database of children's faces: acquisition and validation of a new face stimulus set’, PLoS ONE, 2013, 8, (11), pp. 17.
    44. 44)
      • 44. Phillips, P.J., Wechsler, H., Huang, J., et al: ‘The FERET database and evaluation procedure for face-recognition algorithms’, Image Vis. Comput., 1998, 16, (5), pp. 295306.
    45. 45)
      • 45. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ‘Imagenet classification with deep convolutional neural networks’. Advances in Neural Information Processing Systems, 2012, pp. 10971105.
    46. 46)
      • 46. Simonyan, K., Zisserman, A.: ‘Very deep convolutional networks for large-scale image recognition’, arXiv Prepr. arXiv1409.1556, 2014.
    47. 47)
      • 47. Szegedy, C., Liu, W., Jia, Y., et al: ‘Going deeper with convolutions’. Proc. IEEE Conf. on Computer Vision and Pattern Recognition, 2015, pp. 19.
    48. 48)
      • 48. El Dib, M.Y., El-Saban, M.: ‘Human age estimation using enhanced bio-inspired features (EBIF)’. 2010 IEEE Int. Conf. on Image Processing, September 2010, pp. 15891592.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cvi.2016.0486
Loading

Related content

content/journals/10.1049/iet-cvi.2016.0486
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address