http://iet.metastore.ingenta.com
1887

Algorithmic optimisation of histogram intersection kernel support vector machine-based pedestrian detection using low complexity features

Algorithmic optimisation of histogram intersection kernel support vector machine-based pedestrian detection using low complexity features

For access to this article, please select a purchase option:

Buy article PDF
$19.95
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Computer Vision — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Histogram intersection kernel support vector machine (SVM) is accepted as a better discriminator than its linear counterpart when used for pedestrian detection in images and video frames. Its computational complexity has, however, limited its use in practical real-time detectors. To circumvent this problem, prior work proposed a low complexity detection framework based on integer-only histograms of oriented gradient features which allow a look-up table-based implementation of kernel SVM leading to further simplification without compromising detection performance. This work describes several important enhancements made in the original framework related to the pre-processing steps, feature calculation and training setup. Resultantly, the augmented framework, proposed in this study, stands out in terms of the detection accuracy and computational complexity compared to contemporary detectors. The best detector described in this study achieves 8 and 2% lesser miss rates (MRs) on ETH and INRIA pedestrian datasets, respectively, compared to the well-known boosting cascades-based aggregate channel feature detector despite avoiding complex floating point operations. Moreover, the proposed detector performs exceptionally better in scenarios where less than 10−2 false positives per image are desired as demonstrated through the MR versus false positive curves.

References

    1. 1)
      • 1. Dalal, N., Triggs, B.: ‘Histograms of oriented gradients for human detection’. Proc. IEEE Computer Society Conf. on Computer Vision and Pattern Recognition, San Diego, CA, USA, June 2005, pp. 886893.
    2. 2)
      • 2. Dollar, P., Appel, R., Belongie, S., et al: ‘Fast feature pyramids for object detection’, IEEE Trans. Pattern Anal. Mach. Intell., 2014, 36, (8), pp. 15321545.
    3. 3)
      • 3. Wang, X., Han, T.X., Yan, S.: ‘An HOG-LBP human detector with partial occlusion handling’. Proc. IEEE 12th Int. Conf. on Computer Vision, Kyoto, Japan, September 2009, pp. 3239.
    4. 4)
      • 4. Wu, J.: ‘Efficient HIK SVM learning for image classification’, IEEE Trans. Image Process., 2012, 21, (10), pp. 44424453.
    5. 5)
      • 5. Zhao, Y., Zhang, Y., Cheng, R., et al: ‘An enhanced histogram of oriented gradients for pedestrian detection’, IEEE Intell. Transp. Syst. Mag., 2015, 7, (3), pp. 2938.
    6. 6)
      • 6. Bilal, M., Khan, A., Khan, M.U.K., et al: ‘A low complexity pedestrian detection framework for smart video surveillance systems’, IEEE Trans. Circuits Syst. Video Technol., 2016, PP, (99), pp. 11.
    7. 7)
      • 7. Paisitkriangkrai, S., Shen, C., Hengel, A.V.D.: ‘Pedestrian detection with spatially pooled features and structured ensemble learning’, IEEE Trans. Pattern Anal. Mach. Intell., 2016, 38, (6), pp. 12431257.
    8. 8)
      • 8. Dollar, P., Wojek, C., Schiele, B., et al: ‘Pedestrian detection: an evaluation of the state of the art’, IEEE Trans. Pattern Anal. Mach. Intell., 2012, 34, (4), pp. 743761.
    9. 9)
      • 9. Zhang, S., Benenson, R., Omran, M., et al: ‘How far are we from solving pedestrian detection?’. Proc. IEEE Computer Society Conf. on Computer Vision and Pattern Recognition, Las Vegas, USA, June 2016, pp. 12591267.
    10. 10)
      • 10. Benenson, R., Omran, M., Hosang, J., et al: ‘Ten years of pedestrian detection, what have we learned?’. Proc. ECCV Workshop on Computer Vision for Road Scene Understanding and Autonomous Driving, Zurich, Switzerland, September 2014, pp. 613627.
    11. 11)
      • 11. Watanabe, T., Ito, S.: ‘Two co-occurrence histogram features using gradient orientations and local binary patterns for pedestrian detection’. Proc. 2nd IAPR Asian Conf. on Pattern Recognition, Okinawa, Japan, November 2013, pp. 415419.
    12. 12)
      • 12. Ma, X., Najjar, W.A., Roy-Chowdhury, A.K.: ‘Evaluation and acceleration of high-throughput fixed-point object detection on FPGAs’, IEEE Trans. Circuits Syst. Video Technol., 2015, 25, (6), pp. 10511062.
    13. 13)
      • 13. Chen, P.Y., Huang, C.C., Lien, C.Y., et al: ‘An efficient hardware implementation of HOG feature extraction for human detection’, IEEE Trans. Intell. Transp. Syst., 2014, 15, (2), pp. 656662.
    14. 14)
      • 14. Maji, S., Berg, A.C., Malik, J.: ‘Classification using intersection kernel support vector machines is efficient’. Proc. IEEE Computer Society Computer Vision and Pattern Recognition, Anchorage, Alaska, USA, June 2008, pp. 18.
    15. 15)
      • 15. Wu, J., Rehg, J.M.: ‘Beyond the Euclidean distance: creating effective visual codebooks using the Histogram Intersection Kernel’. Proc. IEEE 12th Int. Conf. on Computer Vision, Kyoto, Japan, September 2009, pp. 630637.
    16. 16)
      • 16. Benenson, R., Mathias, M., Tuytelaars, T., et al: ‘Seeking the strongest rigid detector’. Proc. IEEE Computer Society Conf. on Computer Vision and Pattern Recognition, Portland, Oregon, USA, June 2013, pp. 36663673.
    17. 17)
      • 17. Zhang, S., Benenson, R., Schiele, B.: ‘Filtered channel features for pedestrian detection’. Proc. IEEE Computer Society Conf. on Computer Vision and Pattern Recognition, Boston, MA, USA, June 2015, pp. 17511760.
    18. 18)
      • 18. Benenson, R., Mathias, M., Timofte, R., et al: ‘Pedestrian detection at 100 frames per second’. Proc. IEEE Computer Society Conf. on Computer Vision and Pattern Recognition, Providence, RI, USA, June 2012, pp. 29032910.
    19. 19)
      • 19. Yang, J., Jiang, Y.-G., Hauptmann, A.G., et al: ‘Evaluating bag-of-visual-words representations in scene classification’. Proc. Int. Workshop on Multimedia Information Retrieval, Augsburg, Bavaria, Germany, September 2007, pp. 197206.
    20. 20)
      • 20. Jiang, Y.-G., Ngo, C.-W., Yang, J.: ‘Towards optimal bag-of-features for object categorization and semantic video retrieval’. Proc. 6th ACM Int. Conf. on Image and Video Retrieval, Amsterdam, The Netherlands, July 2007, pp. 494501.
    21. 21)
      • 21. Lowe, D.G.: ‘Distinctive image features from scale-invariant keypoints’, Int. J. Comput. Vis., 2004, 60, (2), pp. 91110.
    22. 22)
      • 22. Everingham, M., Van Gool, L., Williams, C.K.I., et al: ‘The Pascal Visual Object Classes (VOC) challenge’, Int. J. Comput. Vis., 2010, 88, (2), pp. 303338.
    23. 23)
      • 23. National Institute of Standards and Technology (NIST), ‘TREC Video Retrieval Evaluation (TRECVID)’, http://www-nlpir.nist.gov/projects/trecvid/, accessed 27 December 2016.
    24. 24)
      • 24. Zhang, L., Lin, L., Liang, X., et al: ‘Is faster R-CNN doing well for pedestrian detection?’. Proc. the 14th European Conf. on Computer Vision, Amsterdam, The Netherlands, October 2016, pp. 443457.
    25. 25)
      • 25. Ren, S., He, K., Girshick, R., et al: ‘Faster (R-CNN): towards real-time object detection with region proposal networks’, IEEE Trans. Pattern Anal. Mach. Intell., 2015, PP, (99), pp. 11.
    26. 26)
      • 26. Hosang, J., Omran, M., Benenson, R., et al: ‘Taking a deeper look at pedestrians’. Proc. IEEE Computer Society Conf. on Computer Vision and Pattern Recognition, Boston, Massachusetts, USA, June 2015, pp. 40734082.
    27. 27)
      • 27. Felzenszwalb, P.F., Girshick, R.B., McAllester, D., et al: ‘Object detection with discriminatively trained part-based models’, IEEE Trans. Pattern Anal. Mach. Intell., 2010, 32, (9), pp. 16271645.
    28. 28)
      • 28. Yan, J., Zhang, X., Lei, Z., et al: ‘Robust multi-resolution pedestrian detection in traffic scenes’. Proc. IEEE Conf. on Computer Vision and Pattern Recognition, June 2013, pp. 30333040.
    29. 29)
      • 29. Maksai, A., Wang, X., Fleuret, F., Fua, P.: ‘Globally Consistent Multi-People Tracking using Motion Patterns’, https://arxiv.org/abs/1612.00604, accessed 27 December 2016.
    30. 30)
      • 30. Wang, X., Türetken, E., Fleuret, F., et al: ‘Tracking interacting objects using intertwined flows’, IEEE Trans. Pattern Anal. Mach. Intell., 2016, 38, (11), pp. 23122326.
    31. 31)
      • 31. Joachims, T.: ‘Making large-scale support vector machine learning practical’, in Schölkopf, B., Burges, C.J.C., Smola, A.J. (EDs.): ‘Advances in kernel methods’ (MIT Press, 1999), pp. 169184.
    32. 32)
      • 32. Bradski, G.: The OpenCV Library. Dr. Dobb’s Journal of Software Tools, 2000.
    33. 33)
      • 33. Dalal, N., Triggs, B.: ‘INRIA Pedestrian Dataset’, http://pascal.inrialpes.fr/data/human/, accessed 1 September 2016.
    34. 34)
      • 34. Dollár, P.: ‘Caltech Pedestrian Dataset’, http://www.vision.caltech.edu/Image_Datasets/CaltechPedestrians/, accessed 1 September 2016.
    35. 35)
      • 35. Ess, A., Leibe, B., Schindler, K., Van Gool, L.: ‘A mobile vision system for robust multi-person tracking’, 2008 IEEE Conference on Computer Vision and Pattern Recognition, Anchorage, AK, 2008, pp. 18.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cvi.2016.0403
Loading

Related content

content/journals/10.1049/iet-cvi.2016.0403
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address