http://iet.metastore.ingenta.com
1887

Convolution of 3D Gaussian surfaces for volumetric intensity inhomogeneity estimation and correction in 3D brain MR image data

Convolution of 3D Gaussian surfaces for volumetric intensity inhomogeneity estimation and correction in 3D brain MR image data

For access to this article, please select a purchase option:

Buy article PDF
$19.95
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Computer Vision — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Magnetic resonance (MR) imaging technique has become indispensable in image-guided diagnosis and clinical research. However, present MR image acquisition leads to a slow varying intensity inhomogeneity (IIH) in MR image data. This study presents a novel technique based on convolution of three-dimensional (3D) Gaussian surfaces, which is denoted as ‘Co3DGS’, for volumetric IIH estimation and correction for 3D brain MR image data. A 3D Gaussian surface is approximated using local voxel gradients on each tissue volume corresponding to grey matter, white matter and cerebrospinal fluid of the 3D brain MR image data and then convolved to partially estimate the IIH, which is subsequently removed from the image data. The above processes are repeated until there is no such significant change in the voxel gradients. The Co3DGS technique has been tested on both synthetic and in-vivo human 3D brain MR image data of different pulse sequences. The empirical results both in qualitatively and quantitatively, which include coefficient of joint variation, index of variation, index of joint variation, index of class separability and root mean square error, collectively demonstrate that the Co3DGS efficiently estimates and removes the IIH from the 3D brain MR image data and stands superior to some state-of-the-art methods.

References

    1. 1)
      • 1. Simmons, A., Tofts, P.S., Barker, G.J., et al: ‘Sources of intensity nonuniformity in spin echo images at 1.5 T’, Mag. Reson. Med., 1994, 32, (1), pp. 121128.
    2. 2)
      • 2. Axel, L., Costantini, J., Listerud, J.: ‘Intensity correction in surface coil MR imaging’, AJR Am. J. Roentgenol., 1987, 148, (2), pp. 418420.
    3. 3)
      • 3. Wicks, D.A., Barker, G.J., Tofts, P.S.: ‘Correction of intensity nonuniformity in MR images of any orientation’, Magn. Reson. Imaging, 1993, 11, (2), pp. 183196.
    4. 4)
      • 4. Narayana, P.A., Brey, W.W., Kulkarni, M.V., Soevenpiper, C.L.: ‘Compensation for surface coil sensitivity variation in magnetic resonance imaging’, Magn. Reson. Imaging, 1988, 6, (3), pp. 271274.
    5. 5)
      • 5. Wang, J., Lu, Z., Constable, R.T.: ‘Signal inhomogeneity correction and performance evaluation apparatus’, U.S. Patent 20,160,018,502, January 2016.
    6. 6)
      • 6. Andreasen, N.C., Liu, D., Ziebell, S., et al: ‘Relapse duration, treatment intensity, and brain tissue loss in schizophrenia: a prospective longitudinal MRI study’, Am. J. Psychiatry, 2013, 170, (6), pp. 609615.
    7. 7)
      • 7. Vovk, U., Pernus, F., Likar, B.: ‘A review of methods for correction of intensity inhomogeneity in MRI’, IEEE Trans. Med. Imaging, 2007, 26, (3), pp. 405421.
    8. 8)
      • 8. Sled, J.G., Zidenbos, A.P., Evans, A.C.: ‘A nonparametric method for automatic correction of intensity nonuniformity in MRI data’, IEEE Trans. Med. Imaging, 1998, 17, (1), pp. 8797.
    9. 9)
      • 9. Tustison, N.J, Avants, B.B, Cook, P.A., et al: ‘N4ITK: improved N3 bias correction’, IEEE Trans. Med. Imaging, 2010, 29, (6), pp. 13101320.
    10. 10)
      • 10. Likar, B., Viergever, M.A., Pernus, F.: ‘Retrospective correction of MR intensity inhomogeneity correction by information minimization’, IEEE Trans. Med. Imaging., 2001, 20, (12), pp. 13981410.
    11. 11)
      • 11. Dawant, B.M., Zijdenbos, A.P., Margolin, R.A.: ‘Correction of intensity variations in MR images for computer-aided tissues classification’, IEEE Trans. Med. Imaging, 1993, 12, (4), pp. 770781.
    12. 12)
      • 12. Zhuge, Y., Udupa, J.K., Liu, J., et al: ‘Scale based method for correcting background intensity variation in acquired images’. Proc. SPIE Medical Imaging 2002: Image Processing, May 2002, vol. 4686, pp. 11031111.
    13. 13)
      • 13. Meyer, C.R., Bland, P.H., Pipe, J.: ‘Retrospective correction of intensity inhomogeneities in MRI’, IEEE Trans. Med. Imaging, 1995, 14, (1), pp. 3641.
    14. 14)
      • 14. Lai, S.H., Fang, M.: ‘A new variational shape-form-orientation approach to clustering intensity inhomogeneities in magnetic resonance images’, Med. Imaging Anal., 1999, 3, (4), pp. 409424.
    15. 15)
      • 15. Zhuge, Y., Udupa, J.K., Liu, J., et al: ‘Scale-based method for correcting background intensity variation in acquired images’. Medical Imaging Int. Society for Optics and Photonics, 2002 May, pp. 11031111.
    16. 16)
      • 16. Hui, C., Zhou, Y.X, Narayana, P.: ‘Fast algorithm for calculation of inhomogeneity gradient in magnetic resonance imaging data’, J. Magn. Reson. Imaging, 2010, 32, (5), pp. 11971208.
    17. 17)
      • 17. Milles, J., Zhu, Y.M., Gimenez, G., et al: ‘MRI intensity nonuniformity correction using simultaneously spatial and gray-level histogram information’, Comput. Med. Imaging Graph., 2007, 31, (2), pp. 8190.
    18. 18)
      • 18. Milchenko, M.V., Pianykh, O.S., Tyler, J.M.: ‘A fast automatic algorithm for correction of MR bias field’, J. Magn. Reson. Imaging, 2006, 24, (4), pp. 891900.
    19. 19)
      • 19. Ling, Q., Li, Z., Song, K., et al: ‘An iterative method for coil sensitivity estimation in multi-coil MRI systems’, Magn. Reson. Imaging, 2014, 32, (10), pp. 13651376.
    20. 20)
      • 20. Ling, Q., Li, Z., Huang, Q., et al: ‘A robust gradient-based algorithm to correct bias fields of brain MR images’, IEEE Trans. Auton. Mental Develop., 2015, 7, (3), pp. 256264.
    21. 21)
      • 21. Vemuri, P., Kholmovski, E.G., Parkar, D.L., et al: ‘Coil sensitivity estimation for optimal SNR reconstruction and intensity inhomogeneity correction in phased array MR imaging’. Proc. Information Processing and Medical Imaging (IPMI), 2005, vol. 19, pp. 603614.
    22. 22)
      • 22. Adhikari, S.K., Sing, J.K., Basu, D.K., et al: ‘A nonparametric method for intensity inhomogeneity correction in MRI brain images by fusion of Gaussian surfaces’, Signal Image Video Process., 2015, 9, (8), pp. 19451954.
    23. 23)
      • 23. Kahali, S., Adhikari, S.K., Sing, J.K.: ‘On estimation of bias field in MRI images’. Proc. IEEE Int. Conf. on Computer Graphics, Vision and Information Security (CGVIS), 2015, pp. 269274.
    24. 24)
      • 24. Kahali, S., Adhikari, S.K., Sing, J.K.: ‘On estimation of bias field in MRI images: polynomial vs Gaussian surface fitting method’, J. Chemometr., 2016, 30, (10), pp. 602620.
    25. 25)
      • 25. Banerjee, A., Maji, P.: ‘Rough sets for bias field correction in MR images using contraharmonic mean and quantitative index’, IEEE Trans. Med. Imaging, 2013, 32, (11), pp. 21402151.
    26. 26)
      • 26. Belaroussi, B., Milles, J., Carme, S., et al: ‘Intensity non-uniformity correction in MRI: existing methods and their validation’, Med. Imaging Anal., 2006, 10, (2006), pp. 234246.
    27. 27)
      • 27. Bauer, S., Wiest, R., Nolte, L.P., et al: ‘A survey of MRI-based medical image analysis for brain tumor studies’, Phys. Med. Biol., 2013, 58, (13), pp. R97R129.
    28. 28)
      • 28. Manze, B.H., Jakab, A., Bauer, S., et al: ‘The multimodal brain tumor segmentation benchmarks (BRATS)’, IEEE Trans. Med. Imaging, 2015, 34, (10), pp. 19932024.
    29. 29)
      • 29. Ahmed, M.N., Yamany, S.M., Mohamed, N., et al: ‘A modified fuzzy c-means algorithm for bias field estimation and segmentation of MRI data’, IEEE Trans. Med. Imaging, 2002, 21, (3), pp. 193199.
    30. 30)
      • 30. Pham, D.L., Prince, J.L.: ‘An adaptive fuzzy c-means algorithm for image segmentation in presence of intensity inhomogeneity’, Pattern Recognit. Lett., 1999, 20, (1), pp. 5768.
    31. 31)
      • 31. Ji, Z., Sun, Q., Xia, D.: ‘A modified possibilistic fuzzy c-means clustering algorithm for bias field estimation and segmentation of brain MR image’, Comput. Med. Imaging Graph., 2011, 35, (5), pp. 383397.
    32. 32)
      • 32. Li, C., Gore, J.C., Davatzikos, C.: ‘Multiplicative intrinsic component optimization (MICO) for MRI bias field estimation and tissue segmentation’, Magn. Reson. Imaging, 2014, 32, (7), pp. 913923.
    33. 33)
      • 33. Ivanovska, T., Laqua, R., Wang, L., et al: ‘An efficient level set method for simultaneous intensity inhomogeneity correction and segmentation of MR images’, Comput. Med. Imaging Graph., 2016, 48, (2016), pp. 920.
    34. 34)
      • 34. Kwan, R.K.-S., Evans, A.C., Pike, G.B.: ‘MRI simulation-based evaluation of image-processing and classification methods’, IEEE Trans. Med. Imaging, 1999, 18, (11), pp. 10851097.
    35. 35)
      • 35. Collins, D.L., Zijdenbos, A.P., Kollokian, V., et al: ‘Design and construction of a realistic digital brain phantom’’, IEEE Trans. Med. Imaging, 1998, 17, (3), pp. 463468.
    36. 36)
      • 36. Hou, Z.: ‘A review on MR image intensity inhomogeneity correction’, Int. Journal of Biomed. Imaging, 2006, 2006, (2006), pp. 111.
    37. 37)
      • 37. https://imagej.nih.gov/ij/plugins/surface-plot-3d.html.
    38. 38)
      • 38. Vovk, U., Pernus, F., Likar, B.: ‘MRI intensity inhomogeneity correction by combining intensity and spatial information’, Phys. Med. Biol., 2004, 49, (17), pp. 41194133.
    39. 39)
      • 39. Ashburner, J., Friston, K.J.: ‘Unified segmentation’, NeuroImage, 2005, 26, (3), pp. 839851.
    40. 40)
      • 40. Brainweb Brain Image Database: http://www.bic.mni.mcgill.ca/brainweb/.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cvi.2016.0278
Loading

Related content

content/journals/10.1049/iet-cvi.2016.0278
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address