http://iet.metastore.ingenta.com
1887

Real-time calibration of space zoom cameras based on fixed stars

Real-time calibration of space zoom cameras based on fixed stars

For access to this article, please select a purchase option:

Buy article PDF
$19.95
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Computer Vision — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Compared with fixed focus cameras, zoom cameras can be used to provide more precise measurements in space tasks. However, the calibration of zoom cameras in this case is a difficulty, as it is not convenient to set up a calibration device on the spacecraft. To solve this problem, the authors present a real-time zoom camera calibration algorithm based on fixed stars. With the star images captured by the zoom camera, they firstly use a star identification method to recognise the identity of stars. By means a series of coordinate transformation, they are able to build the one-to-one mapping between the pixel coordinates and epoch celestial coordinates of the stars. Finally, the internal and external parameters of the zoom camera are obtained based on the thick lens zoom camera model. Simulation and experiment results show that the internal parameters of zoom cameras are rarely affected by the noise of latitude, longitude and time. Furthermore, the calibration precision and robustness of focal length reaches a satisfactory level.

References

    1. 1)
      • 1. Zhang, Y., Cong, M., Hao, S., et al: ‘On-orbit calibration data-processing technologies for the space-based infrared camera’, IEEE Trans. Geosci. Remote Sens., 2015, 53, (12), pp. 63726384.
    2. 2)
      • 2. Song, Y., Wang, F., Yang, H., et al: ‘Easy to calib: auto-calibration of camera from sequential IM-ages based on VP and EKF’. Innovative Computing Technology (INTECH), 2014 Fourth Int. Conf. on, Luton, 2014, pp. 4145.
    3. 3)
      • 3. Xie, J., Tang, H., Dou, X., et al: ‘On-orbit calibration of domestic APS star tracker’. Earth Observation and Remote Sensing Applications (EORSA), 2014 3rd Int. Workshop on, Changsha, 2014, pp. 239242.
    4. 4)
      • 4. Wilde, M., Chua, Z.K., Fleischner, A.: ‘Effects of multivantage point systems on the teleoperation of space-craft docking’, IEEE Trans. Hum. Mach. Syst., 2014, 44, (2), pp. 200210.
    5. 5)
      • 5. Zhang, Y., Zheng, M., Xiong, X., et al: ‘Multistrip bundle block adjustment of ZY-3 satellite imagery by rigorous sensor model without ground control point’, IEEE Geosci. Remote Sens. Lett., 2015, 12, (4), pp. 865869.
    6. 6)
      • 6. Ma, J., Olsen, S.: ‘Depth from zooming’, J. Opt. Soc. Am. A Opt. Image Sci. Vis., 1990, 7, pp. 18831890.
    7. 7)
      • 7. Lavest, J.M., Rives, G., Dhome, M.: ‘Three-dimensional reconstruction by zooming’, IEEE Trans. Robot. Autom., 1993, 9, pp. 196207.
    8. 8)
      • 8. Lavest, J.M., Rives, G., Dhome, M.: ‘Modeling an object of revolution by zooming’, IEEE Trans. Robot. Autom., 1995, 11, pp. 267271.
    9. 9)
      • 9. Delherm, C., Lavest, J.M., Dhome, M., et al: ‘Dense reconstruction by zooming’, 4th European Conf. on Computer Vision, Cambridge, UK, 1996, 1065, pp. 427438.
    10. 10)
      • 10. Li, M., Lavest, J.M.: ‘Some aspects of zoom lens camera calibration’, IEEE Trans. Pattern Anal. Mach. Intell., 1996, 18, pp. 11051110.
    11. 11)
      • 11. Lavest, J.M., Delherm, C., Peuchot, B., et al: ‘Implicit reconstruction by zooming’, Comput. Vis. Image Und., 1997, 66, pp. 301315.
    12. 12)
      • 12. Klaus, A., Bauer, J., Karner, K., et al: ‘Camera calibration from a single night sky image’. Computer Vision and Pattern Recognition, 2004 (CVPR 2004). Proc. of the 2004 IEEE Computer Society Conf. on, 2004, vol. 1, pp. I-151I-157.
    13. 13)
      • 13. Horiuchi, S., Clark, J.E., Garcia-Miro, C., et al: ‘The all sky celestial reference frame at X/Ka-band (8.4/32 GHz)’. General Assembly and Scientific Symp. (URSI GASS), Beijing, 2014, pp. 11.
    14. 14)
      • 14. Seidelmann, P.K.: ‘International celestial reference system’, Adv. Astronaut. Sci., 1998, 99, (1), pp. 739745.
    15. 15)
      • 15. Fey, A.L.: ‘The status and future of the International Celestial Reference Frame’, Int. Assoc. Geodesy Symp., 2007, 130, pp. 603609.
    16. 16)
      • 16. Griffith, D.T., Singla, P., Junkins, J.L.: ‘Autonomous on-orbit calibration approaches for star tracker cameras’, Adv. Astronaut. Sci., 2002, 112, pp. 3957.
    17. 17)
      • 17. Singla, P., Griffith, D.T., Crassidis, J.L., et al: ‘Attitude determination and autonomous on-orbit calibration of star tracker for the gifts mission’, Adv. Astronaut. Sci., 2002, 112, pp. 1938.
    18. 18)
      • 18. Pal, M., Bhat, M.S.: ‘Star camera calibration combined with independent spacecraft attitude determination’. Proc. of the American Control Conf., 2009, pp. 48364841.
    19. 19)
      • 19. Pal, M., Bhat, M.S.: ‘Autonomous star camera calibration and spacecraft attitude determination’, J. Intell. Robot. Syst., Theory Appl., 2014, 79, (2), pp. 323343.
    20. 20)
      • 20. Sarkis, M.S., C.T. Diepold, K.: ‘Calibrating an automatic zoom camera with moving least squares’, IEEE Trans. Autom. Sci. Eng., 2009, 6, pp. 492503.
    21. 21)
      • 21. Alvarez, L., Gómez, L., Henríquez, P.: ‘Zoom dependent lens distortion mathematical models’, J. Math. Imaging Vis., 2012, 44, (3), p. 480.
    22. 22)
      • 22. Gao, H., Luan, C., Chen, F., et al: ‘Calibration for zooming image shrink-amplify center’, Adv. Comput. Sci. Inf. Eng., 2012, 169, pp. 281286.
    23. 23)
      • 23. Luzum, B.: ‘Recent and anticipated changes to the international earth rotation and reference systems service (IERS) conventions’, Proc. of the Institute of Navigation, National Technical Meeting, 2009, 2, pp. 706710.
    24. 24)
      • 24. Bretagnon, P., Brumberg, V.A.: ‘On transformation between Int. celestial and terrestrial reference systems’, Astron. Astrophys., 2003, 408, (1), pp. 387400.
    25. 25)
      • 25. Lu, D., Qinqin, L., Yinrui, R., et al: ‘Space-time coordinate systems in the high-precision orbit prediction’, Adv. Astronaut. Sci., 2014, 152, pp. 13271341.
    26. 26)
      • 26. Naiming, Q., Qi, X., Jian, G., et al: ‘Quadrilateral algorithm and date fusion method in star identification’. 2014 Int. Conf. on Mechatronics and Control, ICMC 2014, August 31, 2015, pp. 919923.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cvi.2016.0145
Loading

Related content

content/journals/10.1049/iet-cvi.2016.0145
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address