access icon free Multi-band joint local sparse tracking via wavelet transforms

A novel multi-band joint local sparse tracking algorithm via wavelet transforms is proposed in this study. The object image may contain rich information of different types; the authors use wavelet transforms to decompose the object image into some sub-band images first. This will help extract the information in different frequency ranges for the object. Then same block operation is executed on all the sub-band images. The l 2, 1 mixed-norm is used to describe the multi-band joint local sparse representation on each patch; it can effectively extract the structural information in different frequency ranges. Thus, more accurate object appearance model can be established. Second, the coefficients on the diagonal of coefficient matrix are extracted for the confidence degrees of the candidate objects in this band, and then the confidence degree results in all the bands are fused to determine the best candidate object in the current frame. This can effectively alleviate the object drifting. Finally, both qualitative and quantitative evaluation results on 15 challenging video sequences demonstrate that the proposed tracking algorithm in this study can achieve better tracking effects compared with the other state-of-the-art algorithms.

Inspec keywords: matrix algebra; image representation; image sequences; feature extraction; image fusion; wavelet transforms; video signal processing; object tracking

Other keywords: diagonal of coefficient matrix; object image deomposition; wavelet transforms; sub-band images; object drifting; object appearance model; structural information extraction; multiband joint local sparse representation; multiband joint local sparse tracking algorithm; video sequences; l2,1 mixed-norm

Subjects: Image recognition; Algebra; Algebra; Computer vision and image processing techniques; Integral transforms; Integral transforms; Video signal processing; Sensor fusion

References

    1. 1)
      • 33. Zhang, K., Zhang, L., Liu, Q.: ‘Fast visual tracking via dense spatio-temporal context learning’. European Conf. on Computer Vision, Zurich, Switzerland, September 2014, pp. 127141.
    2. 2)
      • 38. Wong, T., Leung, C., Heng, P.: ‘Discrete wavelet transform on consumer-level graphics hardware’, IEEE Trans. Multimedia, 2007, 9, (3), pp. 668673.
    3. 3)
      • 31. Liu, J., Ji, S., Ye, J.: ‘Multi-task feature learning via efficient l2,1 at-norm minimization’. UAI '09 Proc. of the 25th Conf. Uncertainty in Artificial Intelligence, Arlington, VA, USA, 2009, pp. 339348.
    4. 4)
      • 21. Wright, J., Yang, A., Ganesh, A.: ‘Robust face recognition via sparse representation’, IEEE Trans. Pattern Anal. Mach. Intell., 2009, 31, (2), pp. 210227.
    5. 5)
      • 20. Donoho, D.: ‘Compressed sensing’, IEEE Trans. Inf. Theory, 2006, 52, (4), pp. 12891306.
    6. 6)
      • 14. Khare, M., Kumar Srivastava, R., Khare, A.: ‘Object tracking using combination of Daubechies complex wavelet transform and Zernike moment’, Multimedia Tools Appl., 2015, doi: 10.1007/s11042-015-3068-5.
    7. 7)
      • 30. Nie, F., Huang, H., Cai, X.: ‘Efficient and robust feature selection via joint l2,1 at-norms minimization’. Advances in Neural Information Processing Systems 23 (NIPS 2010), 2010, pp. 18131821.
    8. 8)
      • 15. Comaniciu, D., Ramesh, V., Meer, P.: ‘Kernel-based object tracking’, IEEE Trans. Pattern Anal. Mach. Intell., 2003, 25, (5), pp. 564577.
    9. 9)
      • 2. Black, M., Jepson, A.: ‘EigenTracking: robust matching and tracking of articulated objects using a view-based representation’, Int. J. Comput. Vis., 1998, 26, (1), pp. 6384.
    10. 10)
      • 37. Everingham, M., Gool, L., Williams, C.: ‘The PASCAL visual object classes (VOC) challenge’, Int. J. Comput. Vis., 2010, 88, (2), pp. 303338.
    11. 11)
      • 19. Nummiaro, K., Koller-Meier, E., Van Gool, L.: ‘An adaptive color-based particle filter’, Image Vis. Comput., 2003, 21, (1), pp. 99110.
    12. 12)
      • 12. He, C., Zheng, Y., Ahalt, C.S.: ‘Object tracking using the Gabor wavelet transform and the golden section algorithm’, IEEE Trans. Multimedia, 2002, 4, (4), pp. 528537.
    13. 13)
      • 40. Nagesh, P., Gowda, R., Li, B.: ‘Fast GPU implementation of large scale dictionary and sparse representation based vision problems’. IEEE Conf. on Acoustics, Speech and Signal Processing, Dallas, TX, USA, March 2010, pp. 15701573.
    14. 14)
      • 24. Wang, D., Lu, H., Yang, M.-H.: ‘Online object tracking with sparse prototypes’, IEEE Trans. Image Process., 2013, 22, (1), pp. 314325.
    15. 15)
      • 4. Ross, D., Lim, J., Lin, R.: ‘Incremental learning for robust visual tracking’, Int. J. Comput. Vis., 2008, 77, (1/2/3), pp. 125141.
    16. 16)
      • 41. Wu, Z., Wang, Q., Plaza, A.: ‘Parallel implementation of sparse representation classifiers for hyperspectral imagery on GPUs’, IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens., 2015, 8, (6), pp. 29122925.
    17. 17)
      • 16. Perez, P., Hue, C., Vermaak, J.: ‘Color-based probabilistic tracking’. European Conf. on Computer Vision, Copenhagen, Denmark, May 2002, pp. 661675.
    18. 18)
      • 35. Zhang, T., Ghanem, B.: ‘Robust visual tracking via multi-task sparse learning’. IEEE Conf. on Computer Vision and Pattern Recognition, Providence, USA, June 2012, pp. 20422049.
    19. 19)
      • 23. Bai, T., Li, Y.: ‘Robust visual tracking with structured sparse representation appearance model’, Pattern Recognit., 2012, 45, (6), pp. 23902404.
    20. 20)
      • 39. Ikuzawa, T., Ino, F., Hagihara, K.: ‘Reducing memory usage by the lifting-based discrete wavelet transform with a unified buffer on a GPU’, J. Parallel Distrib. Comput., 2016, 93–94, pp. 4455.
    21. 21)
      • 25. Kim, S., Koh, K., Lustig, M.: ‘A method for large-scale 1-regularized least squares’, IEEE J. Sel. Top. Signal Process., 2007, 1, (4), pp. 606617.
    22. 22)
      • 11. Yu, Q., Dinh, T., Medioni, G.: ‘Online tracking and reacquisition using co-trained generative and discriminative trackers’. European Conf. on Computer Vision, Marseille, France, October 2008, pp. 678691.
    23. 23)
      • 34. Bao, C., Wu, Y., Ling, H.: ‘Real time robust L1 tracker using accelerated proximal gradient approach’. IEEE Conf. on Computer Vision and Pattern Recognition, Providence, USA, June 2012, pp. 18301837.
    24. 24)
      • 3. Comaniciu, D., Ramesh, V., Meer, P.: ‘Real-time tracking of nonrigid objects using mean shift’. IEEE Conf. on Computer Vision and Pattern Recognition, Hilton Head Island, USA, June 2000, pp. 142149.
    25. 25)
      • 9. Avidan, S.: ‘Ensemble tracking’, IEEE Trans. Pattern Anal. Mach. Intell., 2007, 29, (2), pp. 261271.
    26. 26)
      • 17. Jia, X., Lu, H., Yang, M.-H.: ‘Visual tracking via adaptive structural local sparse appearance model’. IEEE Conf. on Computer Vision and Pattern Recognition, Providence, USA, June 2012, pp. 18221829.
    27. 27)
      • 28. Yuan, X., Yan, S.: ‘Visual classification with multi-task joint sparse representation’, IEEE Trans. Image Process., 2012, 21, (10), pp. 43494360.
    28. 28)
      • 8. Grabner, H., Leistner, C., Bischof, H.: ‘Semi-supervised online boosting for robust tracking’. European Conf. on Computer Vision, Marseille, France, October 2008, pp. 234247.
    29. 29)
      • 27. Wu, Y., Lim, J., Yang, M.-H.: ‘Online object tracking: a benchmark’. IEEE Conf. on Computer Vision and Pattern Recognition, Portland, USA, June 2013, pp. 24112418.
    30. 30)
      • 10. Babenko, B., Yang, M.-H., Belongie, S.: ‘Visual tracking with online multiple instance learning’. IEEE Conf. on Computer Vision and Pattern Recognition, Miami, USA, June 2009, pp. 983990.
    31. 31)
      • 1. Zeng, F., Liu, X., Huang, Z.: ‘Kernel based multiple cue adaptive appearance model for robust real-time visual tracking’, IEEE Signal Process. Lett., 2013, 20, (11), pp. 10941097.
    32. 32)
      • 32. Zhang, K., Zhang, L., Yang, M.-H.: ‘Fast compressive tracking’, IEEE Trans. Pattern Anal. Mach. Intell., 2014, 36, (10), pp. 20022015.
    33. 33)
      • 22. Mei, X., Ling, H., Wu, Y.: ‘Minimum error bounded efficient L1 tracker with occlusion detection’. IEEE Conf. on Computer Vision and Pattern Recognition, Providence, USA, June 2011, pp. 12571264.
    34. 34)
      • 18. Zhong, W., Lu, H., Yang, M.-H.: ‘Robust object tracking via sparse collaborative appearance model’, IEEE Trans. Image Process., 2014, 23, (5), pp. 23562368.
    35. 35)
      • 7. Grabner, H., Bischof, H.: ‘On-line boosting and vision’. IEEE Conf. on Computer Vision and Pattern Recognition, June 2006, pp. 260267.
    36. 36)
      • 13. Khare, A., Tiwary, U.: ‘Daubechies complex wavelet transform based moving object tracking’. IEEE Symp. on Computational Intelligence in Image and Signal Processing, Honolulu, USA, April 2007, pp. 3640.
    37. 37)
      • 26. Hartley, R., Zisserman, A.: ‘Multiple view geometry in computer vision’ (Cambridge University Press, Cambridge, UK, 2003).
    38. 38)
      • 36. Liu, B., Huang, J., Yang, L.: ‘Robust tracking using local sparse appearance model and k-selection’. IEEE Conf. on Computer Vision and Pattern Recognition, Providence, USA, June 2011, pp. 13131320.
    39. 39)
      • 6. Kwon, J., Lee, K.: ‘Visual tracking decomposition’. IEEE Conf. on Computer Vision and Pattern Recognition, San Francisco, USA, June 2010, pp. 12691276.
    40. 40)
      • 5. Adam, A., Rivlin, E., Shimshoni, T.: ‘Robust fragments-based tracking using the integral histogram’. IEEE Conf. on Computer Vision and Pattern Recognition, June 2006, pp. 798805.
    41. 41)
      • 29. Hu, W., Li, W., Zhang, X.: ‘Single and multiple object tracking using a multi-feature joint sparse representation’, IEEE Trans. Pattern Anal. Mach. Intell., 2015, 37, (4), pp. 816833.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cvi.2016.0079
Loading

Related content

content/journals/10.1049/iet-cvi.2016.0079
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading