http://iet.metastore.ingenta.com
1887

Local non-linear alignment for non-linear dimensionality reduction

Local non-linear alignment for non-linear dimensionality reduction

For access to this article, please select a purchase option:

Buy article PDF
$19.95
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Computer Vision — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

In manifold learning, alignment is performed with the objective of deriving the global low-dimensional coordinates of input data from their local coordinates. In virtually all alignment processes, the relation between the local and global coordinates is designed intuitively, without mathematical deduction and detailed analysis. In this study, the authors propose a local non-linear alignment manifold learning algorithm (LNA) for non-linear dimensionality reduction, based on the concept of local pullback and the mathematical characteristics of a manifold. According to mathematical manifold theory, a function defined on a manifold cannot be differentiated directly on the manifold directly. Instead, it has to be pulled back to Euclidean space with the help of local homeomorphism between the manifold and Euclidean space, where it is then differentiated. In the authors’ proposed algorithm, the component functions of global homeomorphism are regarded as the functions defined on the manifold and pulled back to the Euclidean space. Then, Taylor expansion is utilised up to the second order to establish the relation between the global and local coordinates. The objective function in LNA is based on the alignment error and can be solved with an eigenvalue problem. The experimental results conducted on various datasets verify the validity of the authors’ method.

References

    1. 1)
      • 1. Jolliffe, I.: ‘Principal component analysis’ (Springer-Verlag, New York, 1989).
    2. 2)
      • 2. Cox, T., Cox, M.: ‘Multidimensional scaling’ (Chapman and Hall, London, UK, 1994).
    3. 3)
      • 3. Tenenbaum, J.B., de Silva, V., Langford, J.C.: ‘A global geometric framework for nonlinear dimensionality reduction’, Science, 2000, 290, (5500), pp. 23192323.
    4. 4)
      • 4. de Silva, V., Tenenbaum, J.: ‘Global versus local methods in nonlinear dimensionality reduction’. Proc. Advances Neural Information Processing Systems, 2003, pp. 705712.
    5. 5)
      • 5. Zhang, Z., Chow, T.W.S., Zhao, M.: ‘M-Isomap: orthogonal constrained marginal Isomap for nonlinear dimensionality reduction’, IEEE Trans. Cybern., 2013, 43, (1), pp. 180191.
    6. 6)
      • 6. Gashler, M., Ventura, D., Martinez, T.: ‘Manifold learning by graduated optimization’, IEEE Trans. Syst. Man Cybern. B Cybern., 2011, 41, (6), pp. 14581470.
    7. 7)
      • 7. Roweis, S.T., Saul, L.K.: ‘Nonlinear dimensionality reduction by locally linear embedding’, Science, 2000, 290, (5500), pp. 23232326.
    8. 8)
      • 8. Roweis, S.T., Saul, L.K., Hinton, G.E.: ‘Global coordination of local linear models’. Proc. Advances Neural Information Processing Systems, 2001, pp. 889896.
    9. 9)
      • 9. Saul, L.K., Roweis, S.T.: ‘Think globally, fit locally: Unsupervised learning of low dimensional manifold’, J. Mach. Learn. Res., 2003, 4, pp. 119155.
    10. 10)
      • 10. Chen, J., Ma, Z.M.: ‘Locally linear embedding: A review’, Int. J. Pattern Recogn., 2011, 25, (7), pp. 114.
    11. 11)
      • 11. Li, X., Lin, S., Yan, S., et al: ‘Discriminant locally linear embedding with high-order tensor data’, IEEE Trans. Syst. Man Cybern. B Cybern., 2008, 38, (2), pp. 342352.
    12. 12)
      • 12. Pan, Y., Ge, S.S., Al Mamun, A.: ‘Weighted locally linear embedding for dimension reduction’, Pattern Recognit., 2009, 42, (5), pp. 798811.
    13. 13)
      • 13. Tiirkan, M., Guillemot, C.: ‘Image prediction based on neighbor-embedding methods’, IEEE Trans. Image Process., 2012, 21, (4), pp. 18851898.
    14. 14)
      • 14. Xiang, S.M., Nie, F., Pan, C.H., et al: ‘Regression reformulations of LLE and LTSA with locally linear transformation’, IEEE Trans. Syst., Man, Cybern. B, Cybern., 2011, 4, (5), pp. 12501262.
    15. 15)
      • 15. Zhao, D.: ‘Formulating LLE using alignment technique’, Pattern Recogn., 2005, 39, pp. 22332235.
    16. 16)
      • 16. Donoho, D.L., Grimes, C.: ‘Hessian eigenmaps: new locally linear embedding techniques for high-dimensional data’. Proc. Natl Acad. Sci., 2003, pp. 55915596.
    17. 17)
      • 17. Si, S., Tao, D.C., Chan, K.: ‘Evolutionary cross-domain discriminative Hessian eigenmaps’, IEEE Trans. Image Process., 2010, 19, (4), pp. 10751086.
    18. 18)
      • 18. Li, H., Hao, J., Barrio, R.: ‘Incremental manifold learning by spectral embedding methods’, Pattern Recogn. lett., 2011, 32, (10), pp. 14471455.
    19. 19)
      • 19. Zhang, Z.Y., Zha, H.Y.: ‘Principal manifolds and nonlinear dimensionality reduction via tangent space alignment’, SIAM J. Sci. Comput., 2005, 26, (1), pp. 313338.
    20. 20)
      • 20. Zhang, Z.Y., Wang, J., Zha, H.Y.: ‘Adaptive manifold learning’, IEEE Trans. Pattern Anal. Mach. Intell., 2012, 34, (2), pp. 253265.
    21. 21)
      • 21. Zhang, P., Qiao, H., Zhang, B.: ‘An improved local tangent space alignment method for manifold learning’, Pattern Recognit. Lett., 2011, 32, (2), pp. 181189.
    22. 22)
      • 22. Wang, J., Jiang, W.X., Gou, J.: ‘Extended local tangent space alignment for classification’, Neurocomputing, 2012, 77, pp. 261266.
    23. 23)
      • 23. Zhan, Y.B., Yin, J.P.: ‘Robust local tangent space alignment via iterative weighted PCA’, Neurocomputing, 2011, 74, pp. 19851993.
    24. 24)
      • 24. Belkin, M., Niyogi, P.: ‘Laplacian eigenmaps for dimensionality reduction and data representation’, Neural Comput., 2003, 15, (6), pp. 13731396.
    25. 25)
      • 25. Yan, S., Xu, D., Zhang, H.J., et al: ‘Graph embedding and extensions: a general framework for dimensionality reduction’, IEEE Trans. Pattern Anal. Mach. Intell., 2007, 29, (1), pp. 4051.
    26. 26)
      • 26. Belkin, M., Niyogi, P., Sindhwani, V.: ‘Manifold regularization: a geometric framework for learning from labeled and unlabeled examples’, J. Mach. Learn. Res., 2006, 7, pp. 23992434.
    27. 27)
      • 27. Niyogi, P.: ‘Manifold regularization and semi-supervised learning: some theoretical analyses’, J. Mach. Learn. Res., 2013, 14, pp. 12291250.
    28. 28)
      • 28. Lafon, S., Lee, A.: ‘Diffusion maps and coarse-graining: a unified framework for dimensionality reduction, graph partitioning, and data set parameterization’, IEEE Trans. Pattern Anal. Mach. Intell., 2006, 28, (9), pp. 13931403.
    29. 29)
      • 29. Lafon, S., Keller, Y., Coifman, R.: ‘Data fusion and multicue data matching by diffusion maps’, IEEE Trans. Pattern Anal. Mach. Intell., 2006, 28, (11), pp. 17841797.
    30. 30)
      • 30. Weinberger, K.Q., Saul, L.K.: ‘Unsupervised learning of image manifolds by semidefinite programming’, Int. J. Comput. Vis., 2006, 70, (1), pp. 7790.
    31. 31)
      • 31. Li, Y.: ‘Alignment of overlapping locally scaled patches for multidimensional scaling and dimensionality reduction’, IEEE Trans. Pattern Anal. Mach. Intell., 2008, 30, (3), pp. 438450.
    32. 32)
      • 32. Chen, J., Ma, Z.M., Yang, L.: ‘Local coordinates alignment with global preservation for dimensionality reduction’, IEEE Trans. Neural Netw., 2013, 24, (1), pp. 106117.
    33. 33)
      • 33. Wang, R.P., Shan, S.G., Chen, X., et al: ‘Maximal linear embedding for dimensionality reduction’, IEEE Trans. Pattern Anal. Mach. Intell., 2011, 33, (9), pp. 17761792.
    34. 34)
      • 34. Tyagi, H., Vural, E., Frossard, P.: ‘Tangent space estimation for smooth embeddings of riemannian manifolds’, Inf. Inference, 2013, 2, pp. 69114.
    35. 35)
      • 35. Hou, Y., Zhang, P., Xu, X., et al: ‘Nonlinear dimensionality reduction by locally linear inlaying’, IEEE Trans. Neural Netw., 2009, 20, (2), pp. 300315.
    36. 36)
      • 36. Ma, Z.M., Chen, J.: ‘The Huffman-like alignment in manifold learning’, Int. J. Pattern Recogn., 2014, 28, (4), pp. 125.
    37. 37)
      • 37. Xiang, S.M., Nie, F.P., Zhang, C., et al: ‘Nonlinear dimensionality reduction with local spline embedding’, IEEE Trans. Knowl. Data. En., 2009, 21, (9), pp. 12851298.
    38. 38)
      • 38. Han, Z., Meng, D.Y., Xu, Z.S., et al: ‘Incremental alignment manifold learning’, J. Comput. Sci. Technol., 2011, 26, (1), pp. 153165.
    39. 39)
      • 39. Lai, Z., Wong, W., Xu, Y., et al: ‘Sparse alignment for robust tensor learning’, IEEE Trans. Neur. Net. Lear., 2014, 25, (10), pp. 17791792.
    40. 40)
      • 40. Zhang, T.: ‘Local coordinates alignment (LCA): A novel manifold learning approach’, Int. J. Pattern Recogn. Artif. Intell., 2008, 22, (4), pp. 667690.
    41. 41)
      • 41. Ma, L., Crawford, M.M., Yang, X., et al: ‘Local-manifold-learning-based graph construction for semisupervised hyperspectral image classification’, IEEE Trans. Geosci. Remote Sens., 2015, 53, (5), pp. 28322844.
    42. 42)
      • 42. Karygianni, S., Frossard, P.: ‘Tangent-based manifold approximation with locally linear models’, Signal Process., 2014, 104, pp. 232247.
    43. 43)
      • 43. Xing, X.L., Wang, K.J., Lv, Z., et al: ‘Fusion of local manifold learning methods’, IEEE Singnal Process. lett., 2015, 22, (4), pp. 395399.
    44. 44)
      • 44. Lin, T., Zha, H.: ‘Riemannian manifold learning’, IEEE Trans. Pattern Anal. Mach. Intell., 2008, 30, (5), pp. 796809.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cvi.2015.0441
Loading

Related content

content/journals/10.1049/iet-cvi.2015.0441
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address