http://iet.metastore.ingenta.com
1887

Set of bilateral and radial symmetry shape descriptor based on contour information

Set of bilateral and radial symmetry shape descriptor based on contour information

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Computer Vision — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Form and shape descriptors are among the most useful features for object identification and recognition. Even though there exists a widely used set of shape descriptors and underlying computational methods for their evaluation, frequently they fail to distinguish among very similar objects that they appear very different to the human eye. The authors propose a new set of shape descriptors based on a finer determination of the object symmetry axes, and a more accurate estimation of the bilateral and radial symmetries. These descriptors were thoroughly tested using several synthetic and real objects with varying degrees of symmetry. The methods for axes estimation and symmetry descriptors extraction outperform the widespread shape descriptors in recognising and identifying among very similar objects.

References

    1. 1)
      • 1. Neal, F.B., Russ, J.C.: ‘Measuring shape’ (CRC Press, Boca Raton, 2012).
    2. 2)
      • 2. Sluzek, A.: ‘Identification and inspection of 2-d objects using new moment-based shape descriptors’, Pattern Recognit. Lett., 1995, 16, (7), pp. 687697. doi: http://dx.doi.org/10.1016/0167-8655(95)00021-8. URL http://www.sciencedirect.com/science/article/pii/0167865595000218.
    3. 3)
      • 3. Sparks, R., Madabhushi, A.: ‘Explicit shape descriptors: novel morphologic features for histopathology classification’, Med. Image Anal., 2013, 17, (8), pp. 9971009. doi: http://dx.doi.org/10.1016/j.media.2013.06.002. URL http://www.sciencedirect.com/science/article/pii/S136184151300087X.
    4. 4)
      • 4. Zandonadi, R., Luck, J., Stombaugh, T., et al: ‘Evaluating field shape descriptors for estimating off-target application area in agricultural fields’, Comput. Electron. Agric., 2013, 96, (0), pp. 217226. doi: http://dx.doi.org/10.1016/j.compag.2013.05.011. URL http://www.sciencedirect.com/science/article/pii/S0168169913001312.
    5. 5)
      • 5. Xue, M., Xu, L., Zhou, G.: ‘A new shape descriptor for object recognition’. Int. Conf. on Electrical and Control Engineering (ICECE), 2011, 2011, pp. 56735676. doi: 10.1109/ICECENG.2011.6057080.
    6. 6)
      • 6. Patki, A., Patterson, E.: ‘Decomposing strain maps using Fourier-Zernike shape descriptors’, Exp. Mech., 2012, 52, (8), pp. 11371149. doi: 10.1007/s11340-011-9570-4. URL http://dx.doi.org/10.1007/s11340-011-9570-4.
    7. 7)
      • 7. Zhang, D., Lu, G.: ‘Review of shape representation and description techniques’, Pattern Recogn., 2004, 37, (1), pp. 119. doi: http://dx.doi.org/10.1016/j.patcog.2003.07.008. URL http://www.sciencedirect.com/science/article/pii/S0031320303002759.
    8. 8)
      • 8. Shi, Y., Wang, G., Wang, R., et al: ‘Contour descriptor based on space symmetry and its matching technique’, Optik – Int. J. Light Electron Opt., 2013, 124, (23), pp. 61496153. doi: http://dx.doi.org/10.1016/j.ijleo.2013.04.132. URL http://www.sciencedirect.com/science/article/pii/S0030402613007298.
    9. 9)
      • 9. Peura, M., Iivarinen, J.: ‘Efficiency of simple shape descriptors’. Aspects of Visual Form, 1997, pp. 443451.
    10. 10)
      • 10. Rauber, T.W., Steiger-Garão, A.S.: ‘2-d form descriptors based on a normalized parametric polar transform (unl transform)’. MVA, 1992.
    11. 11)
      • 11. Rui, Y., She, A.C., Huang, T.S.: ‘A modified Fourier descriptor for shape matching in mars’, MARS, in Chang, S.K. (ED.) ‘Image databases and multimedia search, series of software engineering and knowledge engineering’ (World Scientific Publishing, 1998), pp. 165180.
    12. 12)
      • 12. Belongie, S., Malik, J., Puzicha, J.: ‘Shape matching and object recognition using shape contexts’, IEEE Trans. Pattern Anal. Mach. Intell., 2001, 24, pp. 509522.
    13. 13)
      • 13. Chai, L., Qin, Z., Li, Q., et al: ‘Ordered histogram of shapemes: an ordered bag-of-features based shape descriptor for efficient shape matching’. IEEE Int. Conf. on Image Processing (ICIP).
    14. 14)
      • 14. Rauber, T.W., Steiger-Garcao, A.S.: ‘Shape description by unl Fourier features an application to handwritten character recognition’. Proc., 11th IAPR Int. Conf. on Pattern Recognition, 1992. Vol. II. Conf. B: Pattern Recognition Methodology and Systems, 1992, pp. 466469. doi: 10.1109/ICPR.1992.201819.
    15. 15)
      • 15. Dudek, G., Tsotsos, J.K.: ‘Shape representation and recognition from multiscale curvature’, Comput. Vis. Image Underst., 1997, 68, (2), pp. 170189. doi: http://dx.doi.org/10.1006/cviu.1997.0533. URL http://www.sciencedirect.com/science/article/pii/S1077314297905336.
    16. 16)
      • 16. Freeman, H.: ‘On the encoding of arbitrary geometric configurations’, IRE Trans. Electron. Comput., 1961, EC-10, (2), pp. 260268. doi: 10.1109/TEC.1961.5219197.
    17. 17)
      • 17. Alexander, K., Pasi, F.: ‘Polygonal approximation of closed contours’ (Springer Berlin Heidelberg, Berlin, Heidelberg, 2003), pp. 778785. doi: 10.1007/3-540-45103-X-103.
    18. 18)
      • 18. Jain, R., Kasturi, R., Schunck, B.G.: ‘Machine vision’ (McGraw-Hill, 1995).
    19. 19)
      • 19. Bimbo, A.D., Pala, P.: ‘Visual image retrieval by elastic matching of user sketches’, IEEE Trans. Pattern Anal. Mach. Intell., 1997, 19, (2), pp. 121132. doi: 10.1109/34.574790.
    20. 20)
      • 20. Flusser, J., Suk, T.: ‘Pattern recognition by affine moment invariants’, Pattern Recogn., 1993, 26, (1), pp. 167174. doi: http://dx.doi.org/10.1016/0031-3203(93)90098-H. URL http://www.sciencedirect.com/science/article/pii/003132039390098H.
    21. 21)
      • 21. Huang, Z., Cohen, F.S.: ‘Affine-invariant b-spline moments for curve matching’. 1994 IEEE Computer Society Conf. on Computer Vision and Pattern Recognition, 1994, Proc. CVPR ‘94, 1994, pp. 490495. doi: 10.1109/CVPR.1994.323871.
    22. 22)
      • 22. Kan, C., Srinath, M.D.: ‘Invariant character recognition with Zernike and orthogonal Fourier–Mellin moments’, Pattern Recogn., 2002, 35, (1), pp. 143154, shape representation and similarity for image databases. doi: http://dx.doi.org/10.1016/S0031-3203(00)00179-5. URL http://www.sciencedirect.com/science/article/pii/S0031320300001795.
    23. 23)
      • 23. Zhang, H., Shu, H., Haigron, P., et al: ‘Construction of a complete set of orthogonal Fourier Mellin moment invariants for pattern recognition applications’, Image Vis. Comput., 2010, 28, (1), pp. 3844. doi: http://dx.doi.org/10.1016/j.imavis.2009.04.004. URL http://www.sciencedirect.com/science/article/pii/S0262885609000730.
    24. 24)
      • 24. Farajzadeh, N., Faez, K., Pan, G.: ‘Study on the performance of moments as invariant descriptors for practical face recognition systems’, IET Comput. Vis., 2010, 4, pp. 272285(13). URL http://digital-library.theiet.org/content/journals/10.1049/iet-cvi.2009.0140.
    25. 25)
      • 25. Wei, W., Yongmei, J., Lingjun, Z., et al: ‘Contour matching using the affine-invariant support point set’, IET Comput. Vis., 2014, 8, pp. 3544(9). URL http://digital-library.theiet.org/content/journals/10.1049/iet-cvi.2013.0031.
    26. 26)
      • 26. Klette, R., Uni, J.: ‘fADRg shape descriptor distance between shape centroids versus shape diameter’, Comput. Vis. Image Underst., 2012, 116, (6), pp. 690697. doi: http://dx.doi.org/10.1016/j.cviu.2012.02.001. URL http://www.sciencedirect.com/science/article/pii/S1077314212000331.
    27. 27)
      • 27. Ban, H., Yamamoto, H., Fukunaga, M., et al: ‘Toward a common circle: interhemispheric contextual modulation in human early visual areas’, J. Neurosci., 2006, 26, (34), pp. 88048809. arXiv: http://www.jneurosci.org/content/26/34/8804.full.pdf+html, doi: 10.1523/JNEUROSCI.1765-06.2006. URL http://www.jneurosci.org/content/26/34/8804.abstract.
    28. 28)
      • 28. Dakin, S., Herbert, A.: ‘The spatial region of integration for visual symmetry detection’, Proc. R. Soc. Lond. B, Biol. Sci., 1998, 265, (1397), pp. 659664. arXiv: http://rspb.royalsocietypublishing.org/content/265/1397/659.full.pdf+html, doi: 10.1098/rspb.1998.0344. URL http://rspb.royalsocietypublishing.org/content/265/1397/659.abstract.
    29. 29)
      • 29. Beck, D.M., Pinsk, M.A., Kastner, S.: ‘Symmetry perception in humans and macaques’, Trends Cogn. Sci., 2005, 9, (9), pp. 405406. doi: http://dx.doi.org/10.1016/j.tics.2005.07.002. URL http://www.sciencedirect.com/science/article/pii/S1364661305002068.
    30. 30)
      • 30. Feng, Q., Zhang, X.: ‘Visual inspection for circular objects based on global symmetry’, fAASRIg Proc., 2012, 3, (0), pp. 559565, Conf. on Modelling, Identification and Control. doi: http://dx.doi.org/10.1016/j.aasri.2012.11.088. URL http://www.sciencedirect.com/science/article/pii/S2212671612002478.
    31. 31)
      • 31. Pfeifer, R., Bongard, J.C.: ‘How the body shapes the way we think: a new view of intelligence (Bradford Books)’ (The MIT Press, 2006).
    32. 32)
      • 32. Farrera, A., Villanueva, M., Quinto-Sánchez, M., et al: ‘The relationship between facial shape asymmetry and attractiveness in Mexican students’, Am. J. Hum. Biol., 2015, 1, (1), pp. 18.
    33. 33)
      • 33. Parui, S., Majumder, D.D.: ‘Symmetry analysis by computer’, Pattern Recogn., 1983, 16, (1), pp. 6367. doi: http://dx.doi.org/10.1016/0031-3203(83)90009-2. URL http://www.sciencedirect.com/science/article/pii/0031320383900092.
    34. 34)
      • 34. Loy, G., Eklundh, J.-O.: ‘Detecting symmetry and symmetric constellations of features’ (Springer Berlin Heidelberg, Berlin, Heidelberg, 2006), pp. 508521.
    35. 35)
      • 35. Schmitt, O., Hasse, M.: ‘Radial symmetries based decomposition of cell clusters in binary and gray level images’, Pattern Recogn., 2008, 41, (6), pp. 19051923. doi: http://dx.doi.org/10.1016/j.patcog.2007.11.006. URL http://www.sciencedirect.com/science/article/pii/S0031320307004967.
    36. 36)
      • 36. Otsu, N.: ‘A threshold selection method from gray-level histograms’, IEEE Trans. Syst. Man Cybern., 1979, 9, (1), pp. 6266. doi: 10.1109/tsmc.1979.4310076. URL http://dx.doi.org/10.1109/tsmc.1979.4310076.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cvi.2015.0413
Loading

Related content

content/journals/10.1049/iet-cvi.2015.0413
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address