http://iet.metastore.ingenta.com
1887

Bag-of-features for image memorability evaluation

Bag-of-features for image memorability evaluation

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Computer Vision — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Image memorability represents the degree to which images are remembered or forgotten after a period of time. Studying image memorability in computer vision is the task of finding special characteristics in memorable images, in order to develop a representative model of this type of images. Several approaches have been realised to examine features that can affect image memorability. In this study, the authors use bag-of-features as another kind of visual feature descriptor to assess image memorability. The authors’ method based on bag-of-visual-words (BoVWs) technique involves four main steps. First, the authors extract local image features from regions/points of interest which are automatically detected. Then, they encode these local features by mapping them to a created visual vocabulary. Later, the authors apply features pooling and normalisation techniques to obtain image BoVW representation. Finally, the authors use this representation to examine image memorability as a problem of classification. They present different implementation choices for each step and compare reached results. The authors’ method performs best significant results in comparison with other approaches found in literature.

References

    1. 1)
      • 1. Rensink, R.A., O'Regan, J.K., Clark, J.J.: ‘To see or not to see: the need for attention to perceive changes in scenes’, Psych. Sci., 1997, 8, (5), pp. 368373.
    2. 2)
      • 2. Isola, P., Xiao, J., Torralba, A., et al: ‘What makes an image memorable?’. CVPR, Colorado Springs, CO, USA, June 2011, pp. 145152.
    3. 3)
      • 3. Isola, P., Parikh, D., Torralba, A., et al: ‘Understanding the intrinsic memorability of images’. NIPS, Granada, Spain, December 2011, pp. 24292437.
    4. 4)
      • 4. Tuytelaars, T., Mikolajczyk, K.: ‘Local invariant feature detectors: a survey’, Found. Trends Comput. Graph. Vis., 2007, 3, (3), pp. 177280.
    5. 5)
      • 5. Lazebnik, S., Cordelia, S., Jean, P.: ‘Beyond bags of features: spatial pyramid matching for recognizing natural scene categories’. CVPR, New York, NY, USA, June 2006, pp. 21692178.
    6. 6)
      • 6. Nowak, E., Frédéric, J., Bill, T.: ‘Sampling strategies for bag-of-features image classification’. ECCV, Graz, Austria, 2006, pp. 490503.
    7. 7)
      • 7. Jégou, H., Matthijs, D., Cordelia, S.: ‘Improving bag-of-features for large scale image search’, Int. J. Comput. Vis., 2010, 87, (3), pp. 316336.
    8. 8)
      • 8. Khosla, A., Xiao, J., Torralba, A., et al: ‘Memorability of image regions’. NIPS, Lake Tahoe, Nevada, United States, December 2012, vol. 25, pp. 305313.
    9. 9)
      • 9. Isola, P., Xiao, J., Parikh, D., et al: ‘What makes a photograph memorable?’, IEEE Trans. Pattern Anal., 2014, 36, (7), pp. 14691482.
    10. 10)
      • 10. Mancas, M., Le Meur, O.: ‘Memorability of natural scene: the role of attention’. Proc. IEEE Int. Conf. on Image Process., Melbourne, Australia, September 2013, pp. 196200.
    11. 11)
      • 11. Celikkale, B., Erdem, A., Erdem, E.: ‘Visual attention-driven spatial pooling for image memorability’. IEEE Computer Vision and Pattern Recognition Workshops, Portland, OR, USA, June 2013, pp. 976983.
    12. 12)
      • 12. Kim, J., Yoon, S., Pavlovic, V.: ‘Relative spatial features for image memorability’. Twenty- First ACM Int. Conf. Multimedia Proc., Barcelona, Spain, October 2013, pp. 761764.
    13. 13)
      • 13. Bylinskii, Z., Isola, P., Bainbridge, C., et al: ‘Intrinsic and extrinsic effects on image memorability’, Vis. Res., 2015, 116, pp. 165178.
    14. 14)
      • 14. Wang, J.J., Bensmail, H., Xin, G.: ‘Joint learning and weighting of visual vocabulary for bag-of-feature based tissue classification’, Pattern Recognit., 2013, 46, (12), pp. 32493255.
    15. 15)
      • 15. Mikolajczyk, K., Schmid, C.: ‘Scale & affine invariant interest point detectors’, Int. J. Comput. Vis., 2004, 60, (1), pp. 6386.
    16. 16)
      • 16. Harris, C., Stephens, M.: ‘A combined corner and edge detector’. Proc. Fourth Alvey Vision Conf., Manchester, UK, September 1988, pp. 147151.
    17. 17)
      • 17. Tuytelaars, T., van Gool, L.: ‘Matching widely separated views based on affine invariant regions’, Int. J. Comput. Vis., 2004, 59, (1), pp. 6185.
    18. 18)
      • 18. Fogel, I., Sagi, D.: ‘Gabor filters as texture discriminator’, Biol. Cybern., 1989, 61, (2), pp. 103113.
    19. 19)
      • 19. Jurie, F., Triggs, B.: ‘Creating efficient codebooks for visual recognition’. Proc. Tenth IEEE Int. Conf. Computer Vision, Beijing, China, October 2005, pp. 604610.
    20. 20)
      • 20. Lowe, D.G.: ‘Distinctive image features from scale-invariant key points’, Int. J. Comput. Vis., 2004, 60, (2), pp. 91110.
    21. 21)
      • 21. Ke, Y., Sukthankar, R.: ‘PCA-SIFT: a more distinctive representation for local image descriptors’. CVPR, 2004, vol. 2, pp. 506513.
    22. 22)
      • 22. Bay, H., Tuytelaars, T., Gool, L.V.: ‘Surf: speeded up robust features’. Proc. Ninth ECCV, Graz, Austria, May 2006, pp. 404417.
    23. 23)
      • 23. Oliva, A., Torralba, A.: ‘Modeling the shape of the scene: a holistic representation of the spatial envelope’, Int. J. Comput. Vis., 2001, 42, (3), pp. 145175.
    24. 24)
      • 24. Lloyd, S.: ‘Least square quantization in PCM’, IEEE Trans. Inf. Theory, 1982, 28, (2), pp. 129137.
    25. 25)
      • 25. Csurka, G., Bray, C., Dance, C., et al: ‘Visual categorization with bags of keypoints’. ECCV Int. Workshop on Statistical Learning in Computer Vision, Prague, 2004, pp. 122.
    26. 26)
      • 26. Lee, H., Battle, A., Raina, R., et al: ‘Efficient sparse coding algorithms’. NIPS, Vancouver, British Columbia, Canada, December 2006, pp. 801808.
    27. 27)
      • 27. Wang, J., Yang, J., Yu, K., et al: ‘Locality-constrained linear coding for image classification’. CVPR, San Francisco, CA, USA, June 2010, pp. 33603367.
    28. 28)
      • 28. Lingxi, X., Qi, T., Bo, Z.: ‘Feature normalization for part-based image classification’. ICIP, Melbourne, Australia, September 2013, pp. 26072611.
    29. 29)
      • 29. Ng, A.Y., Jordan, M.I.: ‘On discriminative vs. generative classifiers: a comparison of logistic regression and I Bayes’. NIPS, Vancouver, British Columbia, Canada, December 2001, pp. 841848.
    30. 30)
      • 30. Altman, N.S.: ‘An introduction to kernel and nearest-neighbor nonparametric regression’, Am. Stat., 1992, 46, (3), pp. 175185.
    31. 31)
      • 31. Burges, C.: ‘A tutorial on support vector machines for pattern recognition’, Data Min. Knowl. Discov., 1998, pp. 121167.
    32. 32)
      • 32. Hsu, C.-W., Lin, C.-J.: ‘A comparison of methods for multiclass support vector machines’, IEEE Trans. Neural Netw., 2002, 13, (2), pp. 415425.
    33. 33)
      • 33. Breiman, L., Friedman, J.H., Olshen, R.A., et al: ‘Classification and regression trees’. (Wadsworth & Brooks, Cole Advanced Books & Software, Monterey, CA, 1984).
    34. 34)
      • 34. Xiao, J., Hayes, J., Ehinger, K., et al: ‘Sun database: large-scale scene recognition from abbey to zoo’. CVPR, San Francisco, CA, USA, June 2010, pp. 34853492.
    35. 35)
      • 35. Chang, C.C., Lin, C.J.: ‘LIBSVM: a library for support vector machines’, ACM Trans. Intell. Syst. Technol., 2011, 2, (3), pp. 127.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cvi.2015.0383
Loading

Related content

content/journals/10.1049/iet-cvi.2015.0383
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address