http://iet.metastore.ingenta.com
1887

Image encryption scheme based on block-based confusion and multiple levels of diffusion

Image encryption scheme based on block-based confusion and multiple levels of diffusion

For access to this article, please select a purchase option:

Buy article PDF
$19.95
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Computer Vision — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

This study proposes a chaos-based image encryption scheme using Henon map and Lorenz equation with multiple levels of diffusion. The Henon map is used for confusion and the Lorenz equation for diffusion. Apart from the Lorenz equation, another matrix with the same size as the original image is generated which is a complex function of the original image. This matrix which is configured as a diffusion matrix permits two stages of diffusion. Due to this step, there is a strong sensitivity to input image. This encryption algorithm has high key space, entropy very close to eight (for grey images) and very less correlation among adjacent pixels. The highlight of this method is the ideal number of pixels change rate and unified average changing intensity it offers. These ideal values indicate that the encrypted images produced by this proposed scheme are random-like. Further, a cryptanalysis study has been carried out to prove that the proposed algorithm is resistant to known attacks.

References

    1. 1)
      • 1. Shannon, C.E.: ‘Communication theory of secrecy system’, Bell. Syst. Tech. J., 1949, 28, pp. 656715.
    2. 2)
      • 2. Baptista, M.S.: ‘Cryptography with chaos’, Phys. Lett., 1998, 240, (1-2), pp. 5054.
    3. 3)
      • 3. Fridrich, J.: ‘Symmetric ciphers based on two-dimensional chaotic maps’, Int. J. Biffurcat. Chaos, 1998, 8, (6), pp. 12591284.
    4. 4)
      • 4. Guan, Z., Huang, F., Guan, W.: ‘Chaos-based image encryption algorithm’, Phys. Lett., 2005, 346, (1-3), pp. 153157.
    5. 5)
      • 5. Liang, S., Sun, J., Wang, Z.: ‘A block cipher based on suitable use of chaotic standard map’, Chaos Solitons Fractals, 2005, 26, (1), pp. 117129.
    6. 6)
      • 6. Kocarev, L., Jaimovsvski, G.: ‘Chaos and cryptography – from chaotic maps to encryption algorithms’ (Springer, 2007).
    7. 7)
      • 7. Dachshelt, F., Schwarz, W.: ‘Chaos and cryptography’, IEEE Trans. Circuits Syst. I, Fundam. Theory Appl., 2001, 48, (12), pp. 14981509.
    8. 8)
      • 8. Jakimovski, G., Kocarev, L.: ‘Chaos and cryptography: block encryption ciphers based on chaotic maps’, IEEE Trans. Circuits Syst., 2001, 48, (2), pp. 163169.
    9. 9)
      • 9. Papdimitriou, S., Palvides, G., Bezerianos, A., et al: ‘Chaotic real-time encryption using systems of difference equations with large parameter spaces’. IEEE Signal Processing Workshop on Statistical Signal and Array Processing, 1996, pp. 566569.
    10. 10)
      • 10. Mathews, R.: ‘On the derivation of a ‘chaotic’ encryption algorithm’, Crptologia, 1989, 13, (1), pp. 2942.
    11. 11)
      • 11. Kocarev, L., Lian, S.: ‘Chaos-based cryptography theory, algorithms and applications’ (Springer, 2011).
    12. 12)
      • 12. Pareek, N.K., Patidar, V., Sud, K.: ‘Image encryption using chaotic logistic map’, Image Vis. Comput., 2006, 24, (9), pp. 926934.
    13. 13)
      • 13. Tong, X., Cui, M.: ‘Image encryption with compound chaotic sequence cipher shifting dynamically’, Image Vis. Comput., 2008, 26, (6), pp. 843850.
    14. 14)
      • 14. Wu, Y., Zhou, Y., Saveriades, G., et al: ‘Local Shannon entropy measure with statistical tests for image randomness’, Inform. Sci., 2013, 222, (10), pp. 323342.
    15. 15)
      • 15. Alvarez, G., Li, S.: ‘Some basic cryptographic requirements for chaos-based cryptosystems’, Int. J. Bifurcat. Chaos, 2006, 16, (8), pp. 21292153.
    16. 16)
      • 16. Wu, Y., Noonan, J.P., Agaian, S.: ‘NPCR and UACI randomness tests for image encryption’, Cyber J., Multidiscip. J. Sci. Technol., J. Sel. Areas Telecommun. (JSAT), 2011, pp. 3138.
    17. 17)
      • 17. Ye, R.: ‘A novel chaos based image encryption scheme with efficient permutation diffusion mechanism’, Opt. Commun., 2011, 284, (22), pp. 52905298.
    18. 18)
      • 18. Wang, X.Y., Chen, F., Wang, T.: ‘A new compound mode of confusion and diffusion for block encryption of image based on chaos’, Commun. Nonlinear Sci. Numer. Simul., 2010, 15, (9), pp. 24792485.
    19. 19)
      • 19. Zhang, G., Liu, Q.: ‘A novel image encryption method based on total shuffling scheme’, Opt. Commun., 2011, 284, (12), pp. 27752780.
    20. 20)
      • 20. Teng, L., Wang, X.: ‘A bit-level image encryption algorithm based on spatiotemporal chaotic system and self-adaptive’, Opt. Commun., 2012, 285, (20), pp. 40484054.
    21. 21)
      • 21. Wang, X., Jin, C.: ‘Image encryption using game of life permutation and PWLCM chaotic system’, Opt. Commun., 2012, 285, (4), pp. 412417.
    22. 22)
      • 22. Wang, X., Liu, L., Zhang, Y.: ‘A novel chaotic block image encryption algorithm based on dynamic random growth technique’, Opt. Lasers Eng., 2015, 66, pp. 1018.
    23. 23)
      • 23. Chen, J.X., Zhu, Z.L., Fu, C., et al: ‘A fast chaos-based image encryption scheme with a dynamic state variables selection mechanism’, Commun. Nonlinear Sci. Numer. Simul., 2015, 20, (3), pp. 846860.
    24. 24)
      • 24. Boriga, R., Dăscălescu, A.C., Priescu, I.: ‘A new hyperchaotic map and its application in an image encryption scheme’, Signal Process., Image Commun., 2014, 29, (8), pp. 887901.
    25. 25)
      • 25. Zheng, Y., Jin, J.: ‘A novel image encryption scheme based on Hénon map and compound spatiotemporal chaos’, Multimedia Tools Appl., 2014, 74, (18), pp. 118.
    26. 26)
      • 26. Kumar, G., Chandrasekaran, V.: ‘A novel image encryption scheme using Lorenz attractor’. IEEE Conf. on Industrial Electronics and Applications (ICIEA), 2009, pp. 36623666.
    27. 27)
      • 27. Stogartz, S.H.: ‘Non-linear dynamics and chaos’ (Addison-Wesley, 1994).
    28. 28)
      • 28. Lorenz, E.N.: ‘The essence of chaos’ (University of Washington Press, Seattle, WA, 1993).
    29. 29)
      • 29. Liu, H., Kadir, A., Gong, P.: ‘A fast color image encryption scheme using one-time S-boxes based on complex chaotic system and random noise’, Opt. Commun., 2015, 338, pp. 340347.
    30. 30)
      • 30. Li, S.J., Zheng, X.: ‘Cryptanalysis of a chaotic image encryption method’. IEEE Int. Symp. Circuits and Systems, Scottsdale, AZ, 2002, vol. 2, pp. 708711.
    31. 31)
      • 31. Lian, S.G., Sun, J., Wang, Z.: ‘Security analysis of a chaos-based image encryption algorithm’, Physica A, 2005, 351, pp. 645661.
    32. 32)
      • 32. Li, S., Zheng, X.: ‘On the security of an image encryption method’. IEEE Int. Conf. Image Processing (ICIP 02), Rochester, NY, USA, 2002, vol. 2, pp. 925928.
    33. 33)
      • 33. IEEE Computer Society: ‘IEEE standard for binary Floating-Point Arithmetic, ANSI/IEEE std’, August 1985, p. 754.
    34. 34)
      • 34. Arroyo, D., Li, S.: ‘Lessons learnt from the cryptanalysis of chaos-based ciphers’, in Kocarev, L., Lian, S. (Eds.): ‘Chaos based cryptography theory algorithms and applications’ (Springer-Verlag, 2011), pp. 257295.
    35. 35)
      • 35. Solak, E.: ‘Cryptanalysis of chaotic ciphers’, in Kocarev, L., Lian, S. (Eds.): ‘Chaos based cryptography theory algorithms and applications’ (Springer-Verlag, 2011), pp. 227256.
    36. 36)
      • 36. Kanso, A., Ghebleh, M.: ‘A novel image encryption algorithm based on a 3D chaotic map’, Commun. Nonlinear Sci. Numer. Simul., 2012, 17, pp. 29432959.
    37. 37)
      • 37. Xiang, T., Wong, K.W., Liao, X.: ‘A novel symmetrical cryptosystem based on discretized two-dimensional chaotic maps’, Phys. Lett. A, 2007, 364, pp. 252258.
    38. 38)
      • 38. Xiang, T., Liao, X., Tang, G., et al: ‘A novel block cryptosystem based on iterating a chaotic map’, Phys. Lett. A, 2006, 349, pp. 109115.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cvi.2015.0344
Loading

Related content

content/journals/10.1049/iet-cvi.2015.0344
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address