Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

Fast and accurate algorithm for eye localisation for gaze tracking in low-resolution images

Fast and accurate algorithm for eye localisation for gaze tracking in low-resolution images

For access to this article, please select a purchase option:

Buy article PDF
$19.95
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Computer Vision — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Iris centre (IC) localisation in low-resolution visible images is a challenging problem in computer vision community due to noise, shadows, occlusions, pose variations, eye blinks etc. This study proposes an efficient method for determining IC in low-resolution images in the visible spectrum. Even low-cost consumer-grade webcams can be used for gaze tracking without any additional hardware. A two-stage algorithm is proposed for IC localisation. The proposed method uses geometrical characteristics of the eye. In the first stage, a fast convolution-based approach is used for obtaining the coarse location of IC). The IC location is further refined in the second stage using boundary tracing and ellipse fitting. The algorithm has been evaluated in public databases such as BioID, Gi4E and is found to outperform the state-of-the-art methods.

References

    1. 1)
      • 11. Valenti, R., Sebe, N., Gevers, T.: ‘Combining head pose and eye location information for gaze estimation’, IEEE Trans. Image Process., 2012, 21, (2), pp. 802815.
    2. 2)
      • 33. Vukadinovic, D., Pantic, M.: ‘Fully automatic facial feature point detection using Gabor feature based boosted classifiers’. 2005 IEEE Int. Conf. on Systems, Man and Cybernetics, October 2005, (2), pp. 16921698.
    3. 3)
      • 30. Kiruluta, A., Eizenman, M., Pasupathy, S.: ‘Predictive head movement tracking using a Kalman filter’, IEEE Trans. Syst. Man Cybern. B, Cybern. , 1997, 27, (2), pp. 326331.
    4. 4)
      • 22. Sugano, Y., Matsushita, Y., Sato, Y.: ‘Learning-by-synthesis for appearance-based 3D gaze estimation’. Proc. of the IEEE Conf. on Computer Vision and Pattern Recognition, 2014, pp. 18211828.
    5. 5)
      • 14. Daugman, J.: ‘How iris recognition works’, IEEE Trans. Circuits Syst. Video Technol., 2004, 14, (1), pp. 2130.
    6. 6)
      • 42. Viola, P., Jones, M.J.: ‘Robust real-time face detection’, Int. J. Comput. Vis., 2004, 57, (2), pp. 137154.
    7. 7)
      • 12. Timm, F., Barth, E.: ‘Accurate eye centre localisation by means of gradients’. VISAPP, March 2011, pp. 125130.
    8. 8)
      • 20. Zhang, X., Sugano, Y., Fritz, M., et al: ‘Appearance-based gaze estimation in the wild’. Computer Vision and Pattern Recognition, 2015, vol. 1.
    9. 9)
      • 38. Nadaraya, E.A.: ‘On estimating regression’, Theory Probab. Appl., 1964, 9, (1), pp. 141142.
    10. 10)
      • 31. Dalal, N., Triggs, B.: ‘Histograms of oriented gradients for human detection’. IEEE Computer Society Conf. on Computer Vision and Pattern Recognition, 2005, June 2005, (1), pp. 886893.
    11. 11)
      • 9. Yang, P., Du, B., Shan, S., et al: ‘A novel pupil localization method based on Gabor eye model and radial symmetry operator’. , Int. Conf. on Image Processing, October 2004, (1), pp. 6770.
    12. 12)
      • 7. Smereka, M., Dulęba, I.: ‘Circular object detection using a modified Hough transform’, Int. J. Appl. Math. Comput. Sci., 2008, 18, (1), pp. 8591.
    13. 13)
      • 35. Tomasi, C., Kanade, T.: ‘Detection and tracking of point features’ (School of Computer Science, Carnegie Mellon University, Pittsburgh, 1991).
    14. 14)
      • 16. Sewell, W., Komogortsev, O.: ‘Real-time eye gaze tracking with an unmodified commodity webcam employing a neural network’. CHI'10 Extended Abstracts on Human Factors in Computing Systems, 2012, pp. 37393744.
    15. 15)
      • 44. ‘BioID Database’. Available at https://www.bioid.com/About/BioID-Face-Database, accessed April 2014.
    16. 16)
      • 39. Kohn, R., Smith, M., Chan, D.: ‘Nonparametric regression using linear combinations of basis functions’, Stat. Comput., 2001, 11, (4), pp. 313322.
    17. 17)
      • 13. D'Orazio, T., Ancona, N., Cicirelli, C., et al: ‘A ball detection algorithm for real soccer image sequences’. 16th Int. Conf. on Pattern Recognition, 2002. Proc., 2002, (1), pp. 210213.
    18. 18)
      • 15. Baek, S.J., Choi, K.A., Ma, C., et al: ‘Eyeball model-based iris center localization for visible image-based eye-gaze tracking systems’, IEEE Trans. Consum. Electron., 2013, 59, (2), pp. 415421.
    19. 19)
      • 25. Li, D., Winfield, D., Parkhurst, D.J.: ‘Starburst: a hybrid algorithm for video-based eye tracking combining feature-based and model-based approaches’. IEEE Computer Society Conf. on Computer Vision and Pattern Recognition-Workshops, June 2005, p. 79.
    20. 20)
      • 34. Lewis, J.P.: ‘Fast normalized cross-correlation’, Vis. Interface, 1995, 1, (10), pp. 120123.
    21. 21)
      • 4. Markuš, N., Frljak, M., Pandžić, I.S., et al: ‘Eye pupil localization with an ensemble of randomized trees’, Pattern Recognit., 2014, 47, (2), pp. 578587.
    22. 22)
      • 28. Świrski, L., Bulling, A., Dodgson, N.: ‘Robust real-time pupil tracking in highly off-axis images’. Proc. of the Symp. on Eye Tracking Research and Applications, March 2012, pp. 173176.
    23. 23)
      • 3. Zhu, Z., Ji, Q., Fujimura, K., et al: ‘Combining Kalman filtering and mean shift for real time eye tracking under active IR illumination’. 16th Int. Conf. on Pattern Recognition, 2002. Proc., 2002, vol. 4, pp. 318321.
    24. 24)
      • 37. Sigut, J., Sidha, S.A.: ‘Iris center corneal reflection method for gaze tracking using visible light’, IEEE Trans. Biomed. Eng., 2011, 58, (2), pp. 411419.
    25. 25)
      • 19. Wang, J., Sung, E., Venkateswarlu, R.: ‘Eye gaze estimation from a single image of one eye’. Ninth IEEE Int. Conf. on Computer Vision, 2003. Proc., October 2003, pp. 136143.
    26. 26)
      • 5. Illingworth, J., Kittler, J.: ‘A survey of the Hough transform’, Comput. Vis. Graph. Image Process., 1988, 44, (1), pp. 87116.
    27. 27)
      • 1. Hansen, D.W., Ji, Q.: ‘In the eye of the beholder: a survey of models for eyes and gaze’, IEEE Trans. Pattern Anal. Mach. Intell., 2010, 32, (3), pp. 478500.
    28. 28)
      • 40. Cootes, T.F., Edwards, G.J., Taylor, C.J.: ‘Active appearance models’, IEEE Trans. Pattern Anal. Mach. Intell., 2001, 23, (6), pp. 681685.
    29. 29)
      • 46. Burrus, C.S.S., Parks, T.W.: ‘DFT/FFT and convolution algorithms: theory and implementation’ (John Wiley & Sons, Inc., 1991).
    30. 30)
      • 6. Young, D., Tunley, H., Samuels, R.: ‘Specialised Hough transform and active contour methods for real-time eye tracking’ (University of Sussex, Brighton, Cognitive & Computing Science, 1995).
    31. 31)
      • 2. Paperno, E., Semyonov, D.: ‘A new method for eye location tracking’, IEEE Trans. Biomed. Eng., 2003, 50, (10), pp. 11741179.
    32. 32)
      • 26. Fitzgibbon, A., Pilu, M., Fisher, R.B.: ‘Direct least square fitting of ellipses’, IEEE Trans. Pattern Anal. Mach. Intell., 1999, 21, (5), pp. 476480.
    33. 33)
      • 24. Dasgupta, A., George, A., Happy, S.L., et al: ‘A vision-based system for monitoring the loss of attention in automotive drivers’, IEEE Trans. Intell. Transp. Syst., 2013, 14, (4), pp. 18251838.
    34. 34)
      • 17. Zhou, Z.H., Geng, X.: ‘Projection functions for eye detection’, Pattern Recognit., 2004, 37, (5), pp. 10491056.
    35. 35)
      • 41. Cristinacce, D., Cootes, T.F.: ‘Feature detection and tracking with constrained local models’. BMVC, 2006, vol. 1, (2), p. 3.
    36. 36)
      • 43. Jesorsky, O., Kirchberg, K.J., Frischholz, R.W.: ‘Robust face detection using the Hausdorff distance’, Audio Video-based Biometric Person Authentication, 2001, pp. 9095.
    37. 37)
      • 27. Fischler, M.A., Bolles, R.C.: ‘Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography’, Commun. ACM, 1981, 24, (6), pp. 381395.
    38. 38)
      • 29. Yoon, Y., Kosaka, A., Kak, A.C.: ‘A new Kalman-filter-based framework for fast and accurate visual tracking of rigid objects’, IEEE Trans. Robot., 2008, 24, (5), pp. 12381251.
    39. 39)
      • 23. Viola, P., Jones, M.: ‘Rapid object detection using a boosted cascade of simple features’. Proc. of the 2001 IEEE Computer Society Conf. on Computer Vision and Pattern Recognition, 2001, 2001, (1), pp. I511.
    40. 40)
      • 18. Bhaskar, T.N., Keat, F.T., Ranganath, S., et al: ‘Blink detection and eye tracking for eye localization’. Conf. on Convergent Technologies for the Asia-Pacific Region, 2003, (2), pp. 821824.
    41. 41)
      • 10. Valenti, R., Gevers, T.: ‘Accurate eye center location through invariant isocentric patterns’, IEEE Trans. Pattern Anal. Mach. Intell., 2012, 34, (9), pp. 17851798.
    42. 42)
      • 36. Pires, B.R., Hwangbo, M., Devyver, M., et al: ‘Visible-spectrum gaze tracking for sports’. 2013 IEEE Conf. on Computer Vision and Pattern Recognition Workshops, June 2013, pp. 10051010.
    43. 43)
      • 21. Schneider, T., Schauerte, B., Stiefelhagen, R.: ‘Manifold alignment for person independent appearance-based gaze estimation’. IEEE Int. Conf. on Pattern Recognition, 2014, pp. 11671172.
    44. 44)
      • 45. Ponz, V., Villanueva, A., Cabeza, R.: ‘Dataset for the evaluation of eye detector for gaze estimation’. Proc. of the 2012 ACM Conf. on Ubiquitous Computing, September 2012, pp. 681684.
    45. 45)
      • 8. Atherton, T.J., Kerbyson, D.J.: ‘Size invariant circle detection’, Image Vis. Comput., 1999, 17, (11), pp. 795803.
    46. 46)
      • 32. Cristinacce, D., Cootes, T.F.: ‘Facial feature detection and tracking with automatic template selection’. Seventh Int. Conf. on Automatic Face and Gesture Recognition, 2006, April 2006, pp. 429434.
    47. 47)
      • 47. Bradski, G.: ‘The OpenCV library’, Doct. Dobbs J., 2000, 25, (11), pp. 120126.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cvi.2015.0316
Loading

Related content

content/journals/10.1049/iet-cvi.2015.0316
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address