http://iet.metastore.ingenta.com
1887

Two-dimension principal component analysis-based motion detection framework with subspace update of background

Two-dimension principal component analysis-based motion detection framework with subspace update of background

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Computer Vision — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Object detection plays a critical role for automatic video analysis in many vision applications. Background subtraction has been the mainstream in the field of moving objects detection. However, most of state-of-the-art techniques of background subtraction operate on each pixel independently ignoring the global features of images. A motion detection method based on subspace update of background is proposed in this study. This method uses a subspace spanned by the principal components of background sequence to characterise the background and integrates the regional continuity of objects to segment the foreground. To deal with changes in the background geometry, a learning factor is introduced into the authors’ model to update the subspace timely. Additionally, to reduce computational complexity, they use two-dimension principal component analysis (PCA) rather than traditional PCA to obtain the principal components of background. Experiments demonstrate that the update policy is effective and in most cases this proposed method can achieve better results than others compared in this study.

References

    1. 1)
      • 1. Moeslund, T.B., Hilton, A., Krüger, V.: ‘A survey of advances in vision-based human motion capture and analysis’, Comput. Vis. Image Underst., 2006, 104, (2), pp. 90126.
    2. 2)
      • 2. Migliore, D.A., Matteucci, M., Naccari, M.: ‘A revaluation of frame difference in fast and robust motion detection’. Proc. of the Fourth ACM Int. Workshop on Video Surveillance and Sensor Networks, October 2006, pp. 215218.
    3. 3)
      • 3. Singla, N.: ‘Motion detection based on frame difference method’, Int. J. Inf. Comput. Technol., 2014, 4, (15), pp. 15591565.
    4. 4)
      • 4. Alex, D.S., Wahi, A.: ‘BSFD: background subtraction frame difference algorithm for moving object detection and extraction’, J. Theor. Appl. Inf. Technol., 2014, 60, (3), pp. 623628.
    5. 5)
      • 5. Brox, T., Malik, J.: ‘Large displacement optical flow: descriptor matching in variational motion estimation’, IEEE Trans. Pattern Anal. Mach. Intell., 2011, 33, (3), pp. 500513.
    6. 6)
      • 6. Xu, L., Jia, J., Matsushita, Y.: ‘Motion detail preserving optical flow estimation’, IEEE Trans. Pattern Anal. Mach. Intell., 2012, 34, (9), pp. 17441757.
    7. 7)
      • 7. Brutzer, S., Höferlin, B., Heidemann, G.: ‘Evaluation of background subtraction techniques for video surveillance’. Proc. of IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), Jane 2011, pp. 19371944.
    8. 8)
      • 8. Sobral, A., Vacavant, A.: ‘A comprehensive review of background subtraction algorithms evaluated with synthetic and real videos’, Comput. Vis. Image Underst., 2014, 122, pp. 421.
    9. 9)
      • 9. Bouwmans, T.: ‘Traditional and recent approaches in background modeling for foreground detection: an overview’, Comput. Sci. Rev., 2014, 11, pp. 3166.
    10. 10)
      • 10. Bouwmans, T.: ‘Subspace learning for background modeling: a survey’, Recent Pat. Comput. Sci., 2009, 2, (3), pp. 223234.
    11. 11)
      • 11. Cacallaro, A., Ebrahimi, T.: ‘Video object extraction based on adaptive background and statistical change detection’. Proc. of Photonics West 2001-Electronic Imaging, 2000, pp. 465475.
    12. 12)
      • 12. El Maadi, A., Maldague, X.: ‘Outdoor infrared video surveillance: a novel dynamic technique for the subtraction of a changing background of IR images’, Infrared Phys. Technol., 2007, 49, (3), pp. 261265.
    13. 13)
      • 13. Abbott, R.G., Williams, L.R.: ‘Multiple target tracking with lazy background subtraction and connected components analysis’, Mach. Vis. Appl., 2009, 20, (2), pp. 93101.
    14. 14)
      • 14. Jacques, J., Jung, C.R., Musse, S.R.: ‘A background subtraction model adapted to illumination changes’. Proc. of IEEE Int. Conf. on Image Processing, 2006, pp. 18171820.
    15. 15)
      • 15. Haritaoglu, I., Harwood, D., Davis, L.S.: ‘W4: real-time surveillance of people and their activities’, IEEE Trans. Pattern Anal. Mach. Intell., 2000, 22, (8), pp. 809830.
    16. 16)
      • 16. Stauffer, C., Grimson, W.E.L.: ‘Adaptive background mixture models for real-time tracking’. Proc. of IEEE Computer Society Conf. on Computer Vision and Pattern Recognition, 1999, vol. 2, pp. 246252.
    17. 17)
      • 17. He, Y., Harwood, D., Zhu, M.: ‘Background subtraction based on nonparametric Bayesian estimation’. Proc. Int. Conf. of Digital Image Processing, 2001, pp. 80090G80090G-5.
    18. 18)
      • 18. Haines, T.S.F., Xiang, T.: ‘Background subtraction with Dirichlet process mixture models’, IEEE Trans. Pattern Anal. Mach. Intell., 2014, 36, (4), pp. 670683.
    19. 19)
      • 19. Elgammal, A., Harwood, D., Davis, L.: ‘Non-parametric model for background subtraction’. Computer Vision-ECCV 2000, Berlin, 2000, vol. 1843, pp. 751753.
    20. 20)
      • 20. Barnich, O., Van Droogenbroeck, M.: ‘ViBe: a universal background subtraction algorithm for video sequences’, IEEE Trans. Image Process., 2011, 20, (6), pp. 17091724.
    21. 21)
      • 21. Wang, H., Suter, D.: ‘A consensus-based method for tracking: modelling background scenario and foreground appearance’, Pattern Recognit., 2007, 40, (3), pp. 10911105.
    22. 22)
      • 22. Oliver, N.M., Rosario, B., Pentland, A.P.: ‘A Bayesian computer vision system for modelling human interactions’, IEEE Trans. Pattern Anal. Mach. Intell., 2000, 22, (8), pp. 831843.
    23. 23)
      • 23. Tsai, D.M., Lai, S.C.: ‘Independent component analysis-based background subtraction for indoor surveillance’, IEEE Trans. Image Process., 2009, 18, (1), pp. 158167.
    24. 24)
      • 24. Davis, J., Goadrich, M.: ‘The relationship between precision–recall and ROC curves’. Proc. of the 23rd Int. Conf. on Machine Learning, 2006, pp. 233240.
    25. 25)
      • 25. Zhou, X., Yang, C., Yu, W.: ‘Moving object detection by detecting contiguous outliers in the low-rank representation’, IEEE Trans. Pattern Anal. Mach. Intell., 2013, 35, (3), pp. 597610.
    26. 26)
      • 26. Guo, X., Wang, X., Yang, L., et al: ‘Robust foreground detection using smoothness and arbitrariness constraints’. Computer Vision-ECCV 2014, 2014, pp. 535550.
    27. 27)
      • 27. Lin, H.H., Liu, T.L., Chuang, J.H.: ‘Learning a scene background model via classification’, IEEE Trans. Signal Process., 2009, 57, (5), pp. 16411654.
    28. 28)
      • 28. Cevher, V., Sankaranarayanan, A., Duarte, M.F., et al: ‘Compressive sensing for background subtraction’. Computer Vision-ECCV 2008, Berlin, 2008, pp. 155168.
    29. 29)
      • 29. Dikmen, M., Huang, T.S.: ‘Robust estimation of foreground in surveillance videos by sparse error estimation’. Proc. of 19th Int. Conf. on Pattern Recognition (ICPR), 2008, pp. 14.
    30. 30)
      • 30. Mahadevan, V., Vasconcelos, N.: ‘Spatiotemporal saliency in dynamic scenes’, IEEE Trans. Pattern Anal. Mach. Intell., 2010, 32, (1), pp. 171177.
    31. 31)
      • 31. Sun, Y., Tao, X., Li, Y., et al: ‘Robust two-dimensional principal component analysis via alternating optimization’. Int. Conf. on Image Processing, ICIP, Melbourne, Australia, September 2013, pp. 340344.
    32. 32)
      • 32. Sun, Y., Tao, X., Li, Y., et al: ‘Robust 2D principal component analysis: a structured sparsity regularized approach’, IEEE Trans. Image Process., 2015, pp. 25152526.
    33. 33)
      • 33. Li, S.Z.: ‘Markov random field modeling in image analysis’ (Springer Science & Business Media, Tokyo, 2001), pp. 249285.
    34. 34)
      • 34. Kolmogorov, V., Zabin, R.: ‘What energy functions can be minimized via graph cuts?’, IEEE Trans. Pattern Anal. Mach. Intell., 2004, 26, (2), pp. 147159.
    35. 35)
      • 35. Bouwmans, T., Zahzah, E.: ‘Robust PCA via principal component pursuit: a review for a comparative evaluation in video surveillance’. Special Issue on Background Models Challenge, Computer Vision and Image Understanding, CVIU 2014, 2014.
    36. 36)
      • 36. Wang, Y., Jodoin, P.M., Porikli, F., et al: ‘CDnet 2014: an expanded change detection benchmark dataset’. Proc. of IEEE Conf. on Computer Vision and Pattern Recognition Workshops (CVPRW), 2014, pp. 393400.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cvi.2015.0298
Loading

Related content

content/journals/10.1049/iet-cvi.2015.0298
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address