http://iet.metastore.ingenta.com
1887

Asymmetric occlusion detection using linear regression and weight-based filling for stereo disparity map estimation

Asymmetric occlusion detection using linear regression and weight-based filling for stereo disparity map estimation

For access to this article, please select a purchase option:

Buy article PDF
$19.95
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Computer Vision — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Stereo matching computes the disparity information from stereo image pairs. A number of stereo matching methods have been proposed to estimate a fine disparity map. However, objects present in the images are occluded on account of different camera viewpoints in a stereo vision setup, and hence it is quite difficult to get a fine disparity map. The methods which use disparity map information of two cameras (symmetric approach) to detect occluded pixels are computationally more complex. The authors approach entails to detect the occluded pixels only by using single disparity map information (asymmetric approach). The behaviour of reference and target pixels are analysed, and it is observed that the target matching pixels almost follow a linear pattern with respect to the reference image pixels. Hence, it is approximated by a linear regression model, and subsequently this model is used to detect the occluded pixels in the authors’ method. Finally, a fine disparity map is obtained by incorporating a novel occlusion filling method. Experimental results show that the proposed occlusion detection method gives almost similar performance as that of the methods which use two disparity maps for detection. For occlusion filling, the authors utilise support weights from both the stereo images, and hence their method can give better performance.

References

    1. 1)
      • 1. Egnal, G., Wildes, R.P.: ‘Detecting binocular half-occlusions: empirical comparisons of five approaches’, IEEE Trans. Pattern Anal. Mach. Intell., 2002, 24, (8), pp. 11271133.
    2. 2)
      • 2. Zitnick, C.L., Kanade, T.: ‘A cooperative algorithm for stereo matching and occlusion detection’, IEEE Trans. Pattern Anal. Mach. Intell., 2000, 22, (7), pp. 675684.
    3. 3)
      • 3. Kolmogorov, V., Zabih, R.: ‘Computing visual correspondence with occlusions using graph cuts’. Proc. of Int. Conf. on Computer Vision, 2001, pp. 508515.
    4. 4)
      • 4. Deng, Y., Yang, Q., Lin, X., et al: ‘A symmetric patch-based correspondence model for occlusion handling’. Proc. of Int. Conf. on Computer Vision, 2005, pp. 13161322.
    5. 5)
      • 5. Sun, J., Li, Y., Kang, S., et al: ‘Symmetric stereo matching for occlusion handling’. Proc. of Int. Conf. on Computer Vision and Pattern Recognition, 2005, pp. 399406.
    6. 6)
      • 6. Jang, W.S., Ho, Y.S.: ‘Discontinuity preserving disparity estimation with occlusion handling’, J. Vis. Commun. Image Represent., 2014, 25, (7), pp. 15951603.
    7. 7)
      • 7. Yang, Q., Wang, L., Yang, R., et al: ‘Stereo matching with colorweighted correlation, hierarchical belief propagation and occlusion handling’. Proc. of Int. Conf. on Computer Vision and Pattern Recognition, 2006, pp. 23472354.
    8. 8)
      • 8. Hosni, A., Bleyer, M., Gelautz, M., et al: ‘Local stereo matching using geodesic support weights’. Proc. of Int. Conf. on Image Processing, 2009, pp. 20692072.
    9. 9)
      • 9. Huq, S., Koschan, A., Abidi, M.: ‘Occlusion filling in stereo: theory and experiments’, Comput. Vis. Image Underst., 2013, 117, (6), pp. 688704.
    10. 10)
      • 10. Lee, T.S.: ‘Image representation using 2D Gabor wavelets’, IEEE Trans. Pattern Anal. Mach. Intell., 1996, 18, (10), pp. 959971.
    11. 11)
      • 11. Wu, P., Manjunath, B.S., Newsam, S., et al: ‘A texture descriptor for browsing and similarity retrieval’, J. Signal Process., Image Commun., 2000, 16, (1–2), pp. 3343.
    12. 12)
      • 12. Malathi, T., Bhuyan, M.K.: ‘Estimation of disparity map of stereo image pairs using spatial domain local Gabor wavelet’, IET Comput. Vis., 2015, 9, (4), pp. 595602.
    13. 13)
      • 13. Hosni, A., Rhemann, C., Bleyer, M., et al: ‘Fast cost-volume filtering for visual correspondence and beyond’, IEEE Trans. Pattern Anal. Mach. Intell., 2013, 35, (2), pp. 504511.
    14. 14)
      • 14. Ma, Z., He, K., Wei, Y., et al: ‘Constant time weighted median filtering for stereo matching and beyond’. Proc. of Int. Conf. on Computer Vision and Pattern Recognition, 2013, pp. 18.
    15. 15)
      • 15. Scharstein, D., Szeliski, R.: ‘A taxonomy and evaluation of dense two-frame stereo correspondence algorithms’, Int J. Comput. Vis., 2002, 47, (1), pp. 742.
    16. 16)
      • 16. Scharstein, D., Szeliski, R.: ‘High-accuracy stereo depth maps using structured light’. Proc. of Int. Conf. on Computer Vision and Pattern Recognition, 2003, pp. 195202.
    17. 17)
      • 17. Humenberger, M., Engelke, T., Kubinger, W.: ‘A census-based stereo vision algorithm using modified semi-global matching and plane-fitting to improve matching quality’. Proc. of Int. Conf. on Computer Vision and Pattern Recognition Workshops, 2010, pp. 7784.
    18. 18)
      • 18. Mordohai, P., Medioni, G.: ‘Stereo using monocular cues within the tensor voting framework’, IEEE Trans. Pattern Anal. Mach. Intell., 2006, 28, (6), pp. 968982.
    19. 19)
      • 19. Pock, T., Schoenemann, T., Graber, G., et al: ‘A convex formulation of continuous multilabel problems’. Proc. of European Conf. on Computer Vision, 2008, pp. 792805.
    20. 20)
      • 20. Strecha, C., Fransens, R., Van Gool, L.: ‘Combined depth and outlier estimation in multi-view stereo’. Proc. of Int. Conf. on Computer Vision and Pattern Recognition, 2006, pp. 23942401.
    21. 21)
      • 21. Humenberger, M., Zinner, C., Weber, M., et al: ‘A fast stereo matching algorithm suitable for embedded real-time systems’, Comput. Vis. Image Underst., 2010, 114, (11), pp. 11801202.
    22. 22)
      • 22. Gong, M., Yang, Y.H.: ‘Near real-time reliable stereo matching using programmable graphics hardware’. Proc. of Int. Conf. on Computer Vision and Pattern Recognition, 2005, pp. 924931.
    23. 23)
      • 23. Richardt, C., Orr, D., Davies, I., et al: ‘Real-time spatiotemporal stereo matching using the dual-crossbilateral grid’. Proc. of European Conf. on Computer Vision, 2010, pp. 510523.
    24. 24)
      • 24. Yang, Q., Wang, L., Ahuja, N.: ‘A constant-space belief propagation algorithm for stereo matching’. Proc. of Int. Conf. on Computer Vision and Pattern Recognition, 2010, pp. 14581465.
    25. 25)
      • 25. Miyazaki, D., Matsushita, Y., Ikeuchi, K.: ‘Interactive shadow removal from a single image using hierarchical graph cut’. Proc. of Asian Conf. on Computer Vision, 2009, pp. 234245.
    26. 26)
      • 26. Veksler, O.: ‘Stereo correspondence by dynamic programming on a tree’. Proc. of Int. Conf. on Computer Vision and Pattern Recognition, 2005, pp. 384390.
    27. 27)
      • 27. Ambrosch, K., Kubinger, W.: ‘Accurate hardware-based stereo vision’, Comput. Vis. Image Underst., 2010, 114, (11), pp. 13031316.
    28. 28)
      • 28. Nalpantidis, L., Gasteratos, A.: ‘Stereo vision for robotic applications in the presence of non-ideal lighting conditions’, Image Vis. Comput., 2010, 28, (6), pp. 940951.
    29. 29)
      • 29. Mei, X., Sun, X., Zhou, M., et al: ‘On building an accurate stereo matching system on graphics hardware’. Proc. of Int. Conf. on Computer Vision Workshop, 2011, pp. 467474.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cvi.2015.0214
Loading

Related content

content/journals/10.1049/iet-cvi.2015.0214
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address