http://iet.metastore.ingenta.com
1887

Online learning of mixture experts for real-time tracking

Online learning of mixture experts for real-time tracking

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Computer Vision — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Template tracking has been extensively investigated in computer vision to track objects for various applications. Tracking based on gradient descent algorithm using image gradient is one of the most popular object tracking method. However, it is difficult to define the relationship between the observed data set and the warping function due to the unobserved heterogeneity of the data set which inevitably results in poor tracking performance. This study proposes a novel method based on hierarchical mixture of expert to perform robust, real-time tracking from stationary cameras. By extending the idea of hyperplane approximation, the proposed approach establishes a hierarchical mixture of generalised linear regression model instead of a single model which reduces the non-linear error. The experiments’ results show significant improvement over the traditional hyperplane approximation (HA) approach.

References

    1. 1)
      • 1. Collins, R.T., Liu, Y., Leordeanu, M.: ‘Online selection of discriminative tracking features’, IEEE Trans. Pattern Anal. Mach. Intell., 2005, 27, (10), pp. 16311643.
    2. 2)
      • 2. Babenko, B., Yang, M.-H., Belongie, S.: ‘Visual tracking with online multiple instance learning’. IEEE Conf. on Computer Vision and Pattern Recognition, 2009. CVPR 2009.June 2009, pp. 983990.
    3. 3)
      • 3. Kalal, Z., Matas, J., Mikolajczyk, K.: ‘Online learning of robust object detectors during unstable tracking’.  2009 IEEE 12th Int. Conf. on Computer Vision Workshops (ICCV Workshops), September 2009, pp. 14171424.
    4. 4)
      • 4. Grabner, H., Bischof, H.: ‘On-line boosting and vision’.  2006 IEEE Computer Society Conf. on Computer Vision and Pattern Recognition, June 2006, vol. 1, pp. 260267.
    5. 5)
      • 5. Jurie, F., Dhome, M.: ‘Hyperplane approximation for template matching’, IEEE Trans. Pattern Anal. Mach. Intell., 2002, 24, (7), pp. 9961000.
    6. 6)
      • 6. Holzer, S., Pollefeys, M., Ilic, S., et al: ‘Online learning of linear predictors for real-time tracking’. InComputer Vision ECCV 2012, Springer Berlin Heidelberg, 2012, (volume 7572 of Lecture Notes in Computer Science), pp. 470483.
    7. 7)
      • 7. Choi, H.-C., Oh, S.-Y.: ‘Robust segment-based object tracking using generalized hyperplane approximation’, Pattern Recogn., 2012, 45, (8), pp. 29802991.
    8. 8)
      • 8. Holzer, S., Ilic, S., Tan, D., et al: ‘Efficient learning of linear predictors for template tracking’, Int. J. Comput. Vis., 2015, 111, (1), pp. 1228.
    9. 9)
      • 9. Benhimane, S., Malis, E.: ‘Homography-based 2d visual servoing’. Proc. 2006 IEEE Int. Conf. on Robotics and Automation, 2006. ICRA 2006.May 2006, pp. 23972402.
    10. 10)
      • 10. Xiong, X., De la Torre, F.: ‘Global supervised descent method’. Proc. of the IEEE Conf. on Computer Vision and Pattern Recognition, 2015, pp. 26642673.
    11. 11)
      • 11. Raja, Y., McKenna, S.J., Gong, S.: ‘Segmentation and tracking using colour mixture models’. In Computer Vision ACCV'98, Springer Berlin Heidelberg, 1997, (vol. 1351 of Lecture Notes in Computer Science), pp. 607614.
    12. 12)
      • 12. McKenna, S.J., Raja, Y., Gong, S.: ‘Tracking colour objects using adaptive mixture models’, Image Vis. Comput., 1999, 17, (34), pp. 225231.
    13. 13)
      • 13. Hager, G.D., Belhumeur, P.N.: ‘Efficient region tracking with parametric models of geometry and illumination’, IEEE Trans. Pattern Anal. Mach. Intell., 1998, 20, (10), pp. 10251039.
    14. 14)
      • 14. Holzer, S., Ilic, S., Navab, N.: ‘Adaptive linear predictors for real-time tracking’. 2010 IEEE Conf. on Computer Vision and Pattern Recognition (CVPR). IEEE, 2010, pp. 18071814.
    15. 15)
      • 15. Xiong, X., De la Torre, F.: ‘Supervised descent method and its applications to face alignment’.  2013 IEEE Conf. on Computer Vision and Pattern Recognition (CVPR). IEEE, 2013, pp. 532539.
    16. 16)
      • 16. Bishop, C.M.: ‘Pattern recognition and machine learning’ (springer, New York, 2006), vol. 1.
    17. 17)
      • 17. Ripley, B.D.: ‘Pattern recognition and neural networks’ (The press syndicate of the University of Cambridge, 1996).
    18. 18)
      • 18. Grn, B., Leisch, F.: ‘Finite mixtures of generalized linear regression models’. Recent Advances in Linear Models and Related Areas, Physica-Verlag HD, 2008, pp. 205230.
    19. 19)
      • 19. Jordan, M.I.: ‘Hierarchical mixtures of experts and the em algorithm’, IEE Colloquium on Advances in Neural Networks for Control and Systems , 1994, 6, pp. 1/11/3.
    20. 20)
      • 20. Dumortier, F.A.G.: ‘Theory and practice of recursive identification: Lennart ljung and torsten sderstrm’, Automatica, 1985, 21, (4), pp. 499501.
    21. 21)
      • 21. Baker, S., Matthews, I.: ‘Lucas-kanade 20 years on: A unifying framework’, Int. J. Comput. Vis., 2004, 56, (3), pp. 221255.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cvi.2015.0210
Loading

Related content

content/journals/10.1049/iet-cvi.2015.0210
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address