Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Enhanced high dynamic-range image rendering using a surround map based on edge-adaptive layer blurring

Many tone-mapping methods have developed efficient tone compression and local contrast enhancement techniques for high dynamic-range imaging. Local tone mapping enhances the image quality to reveal the details; however, it causes artefacts such as halos. Halo artefacts appear around the edges of an image and lead to deterioration in the overall image quality. Detail-base separation and multi-scale methods have been developed to reduce halo artefacts. Detail-base separation methods divide the image into a detail layer and base layer using an edge-preserving filter and process each layer independently. Multi-scale methods alleviate artefacts such as halos, noise, and awkward global toning using a weighted sum of single-scale images. These methods have several inherent problems including the complexity of the edge-preserving filter and multi-processing redundancy. Therefore, in this study, a novel surround map is presented to resolve halo artefacts and enhance local details in single-scale processing.

References

    1. 1)
      • 9. Horn, B.K.P.: ‘Determining lightness from an image’, Comput. Graph. Image Process., 1974, 3, (4), pp. 277299.
    2. 2)
      • 18. Wang, L., Horiuchi, T., Kotera, H.: ‘High dynamic range image compression by fast integrated surround retinex model’, J. Imaging Sci. Technol., 2007, 51, (1), pp. 3443.
    3. 3)
      • 2. Johnson, G.M., Fairchild, M.D.: ‘Rendering HDR images’. Proc. IS&T/SID 11th Color Imaging Conf., Scottsdale, 2003, pp. 3641.
    4. 4)
      • 5. Lee, G., Lee, S., Kwon, H., et al: ‘Visual acuity-adaptive detail enhancement and shadow noise reduction for iCAM06-based HDR imaging’, Opt. Rev., 2015, 22, (2), pp. 232245.
    5. 5)
      • 11. Mccann, J.: ‘Lessons learned from mondrians applied to real images and color gamuts’. Proc. IS&T/SID Seventh Color Imaging Conf., Scottsdale, 1999, pp. 18.
    6. 6)
      • 19. Tsutsui, H., Yoshikawa, S.: ‘Halo artifacts reduction method for variational based real-time retinex image enhancement’. Proc. Asia-Pacific Signal and Information Processing Association Annual Summit and Conf. (APSIPA ASC), 2012, pp. 16.
    7. 7)
      • 12. Jobson, D.J., Rahman, Z., Woodell, G.A.: ‘Properties and performance of a center/surround retinex’, IEEE Trans. Image Process., 1997, 6, (3), pp. 451462.
    8. 8)
      • 21. Bartleson, C.J., Breneman, E.J.: ‘Brightness perception in complex fields’, J. Opt. Soc. Am., 1967, 57, (7), pp. 953957.
    9. 9)
      • 3. Kwon, H., Lee, S., Bae, T., et al: ‘Compensation of de-saturation effect in HDR imaging using a real scene adaptation model’, J. Vis. Commun. Image Represent., 2013, 24, (6), pp. 678685.
    10. 10)
      • 14. Kimmel, R., Elad, M., Shaked, D., et al: ‘A variational framework for retinex’, Int. J. Comput. Vis., 2003, 52, (1), pp. 723.
    11. 11)
      • 22. Morvic, J.: ‘Color gamut mapping’ (John Wiley & Sons, Ltd, 2008, 1st edn.).
    12. 12)
      • 6. Boitard, R., Pouzarad, M.T., Nasiopoulos, P., et al: ‘Demystifying high-dynamic-range technology’ (IEEE Consumer Electronics Magazine, 2015), pp. 7386.
    13. 13)
      • 17. Paris, S., Kornprobst, P., Tumblin, J., et al: ‘Bilateral filtering: theory and applications’, Foundations Trends Comput. Graph. Vis., 2008, 4, (1), pp. 173.
    14. 14)
      • 4. Lee, S., Kwon, H., Sohng, K.: ‘Complex adaptation-based LDR image rendering for 3D image reconstruction’, Opt. Rev., 2014, 21, (4), pp. 440447.
    15. 15)
      • 16. Meylan, L., Member, S., Süsstrunk, S.: ‘High dynamic range image rendering with a retinex-based adaptive filter’, IEEE Trans. Image Process., 2006, 15, (9), pp. 28202830.
    16. 16)
      • 20. Stevens, J.C., Stevens, S.S.: ‘Brightness function: effects of adaptation’, J. Opt. Soc. Am., 1963, 53, (3), pp. 375385.
    17. 17)
      • 23. Kuang, J., Yamaguchi, H., Liu, C., et al: ‘Evaluating HDR rendering algorithms’, ACM Trans. Appl. Percept., 2007, 4, (2), pp. 938.
    18. 18)
      • 13. Jobson, D.J., Rahman, Z., Woodell, G.A.: ‘A multiscale retinex for bridging the gap between color images and the human observation of scenes’, IEEE Trans. Image Process., 1997, 6, (7), pp. 965976.
    19. 19)
      • 10. Hurlbert, A.: ‘Formal connections between lightness algorithms’, J. Opt. Soc. Am. A., 1986, 3, (10), pp. 16841693.
    20. 20)
      • 8. Land, E.H.: ‘The retinex theory of color vision’, Sci. Am., 1977, 237, (6), pp. 108128.
    21. 21)
      • 7. Huo, Y., Yang, F.: ‘High-dynamic range image generation form single low-dynamic range image’, IET Image Process., 2016, 10, (3), pp. 198205.
    22. 22)
      • 15. Kwon, H., Lee, S., Lee, G., et al: ‘Luminance adaptation transform based on brightness functions for LDR image reproduction’, Digit. Signal Process., 2014, 30, pp. 7485.
    23. 23)
      • 1. Reinhard, E., Ward, G., Pattanaik, S., et al: ‘High dynamic range imaging: acquisition, display and image-based lighting’ (Morgan Kaufmann Press, 2005, 1st edn.).
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cvi.2015.0160
Loading

Related content

content/journals/10.1049/iet-cvi.2015.0160
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address