http://iet.metastore.ingenta.com
1887

Probabilistic approach for maximum likelihood estimation of pose using lines

Probabilistic approach for maximum likelihood estimation of pose using lines

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Computer Vision — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

In this study, the authors have proposed a new solution for the problem of pose estimation from a set of matched 3D model and 2D image lines. Traditional line-based pose estimation methods utilising the finite information of the observations are based on the assumption that the noises for the two endpoints of the image line segment are statistically independent. However, in this study, the authors prove that these two noises are negatively correlative when the image line segment is fitted by the least-squares technique from the noisy edge points. Moreover, the authors derive the noise model describing the probabilistic relationship between the 3D model line and their finite image observations. Based on the proposed noise model, the maximum-likelihood approach is exploited to estimate the pose parameters. The authors have carried out synthetic experiments to compare the proposed method to other pose optimisation methods in the literature. The experimental results show that the proposed methods yield a clear higher precision than the traditional methods. The authors also use real image sequences to demonstrate the performance of the proposed method.

References

    1. 1)
      • 1. Ferraz, L., Binefa, X., Moreno-Noguer, F.: ‘Very fast solution to the PnP problem with algebraic outlier rejection’. IEEE Conf. on Computer Vision and Pattern Recognition, 2014, pp. 501508.
    2. 2)
      • 2. Li, S., Xu, C., Xie, M.: ‘A robust o (n) solution to the perspective-n-point problem’, IEEE Trans. Pattern Anal. Mach. Intell., 2012, 34, (7), pp. 14441450.
    3. 3)
      • 3. Lepetit, V., Moreno-Noguer, F., Fua, P.: ‘Epnp: an accurate o (n) solution to the pnp problem’, Int. J. Comput. Vision, 2009, 81, (2), pp. 155166.
    4. 4)
      • 4. Lu, C., Hager, G.D., Mjolsness, E.: ‘Fast and globally convergent pose estimation from video images’, IEEE Trans. Pattern Anal. Mach. Intell., 2000, 6, (22), pp. 610622.
    5. 5)
      • 5. Dhome, M., Richetin, M., Lapreste, J., et al: ‘Determination of the attitude of 3D objects from a single perspective view’, IEEE Trans. Pattern Anal. Mach. Intell., 1989, 11, (12), pp. 12651278.
    6. 6)
      • 6. Chen, H.H.: ‘Pose determination from line-to-plane correspondences: existence condition and closed-form solutions’. IEEE Int. Conf. on Computer Vision, 1990, pp. 374378.
    7. 7)
      • 7. Navab, N., Faugeras, O.: ‘Monocular pose determination from lines: Critical sets and maximum number of solutions’. IEEE Conf. on Computer Vision and Pattern Recognition, 1993, pp. 254260.
    8. 8)
      • 8. Liu, Y., Huang, T.S., Faugeras, O.D.: ‘Determination of camera location from 2-D to 3-D line and point correspondences’, IEEE Trans. Pattern Anal. Mach. Intell., 1990, 12, (1), pp. 2837.
    9. 9)
      • 9. Adnan, A.: ‘Linear pose estimation from points or lines’, IEEE Trans. Pattern Anal. Mach. Intell., 2003, 25, (5), pp. 578589.
    10. 10)
      • 10. Mirzaei, F.M., Roumeliotis, S.I.: ‘Globally optimal pose estimation from line correspondences’. IEEE Int. Conf. on Robotics and Automation, 2011, pp. 55815588.
    11. 11)
      • 11. Zhang, L., Xu, C., Lee, K., et al: ‘Robust and efficient pose estimation from line correspondences’. Asian Conf. on Computer Vision, 2013, pp. 217230.
    12. 12)
      • 12. Liu, J., Zhang, X., Liu, H., et al: ‘New method for camera pose estimation based on line correspondence’, Sci. China Tech. Sci., 2013, 56, (11), pp. 27872797.
    13. 13)
      • 13. Phong, Q.T., Horaud, R., Yassine, A.: ‘Object pose from 2-D to 3-D point and line correspondences’, Int. J. Comput. Vision, 1995, 15, pp. 225243.
    14. 14)
      • 14. Kumar, R., Hanson, A.R.: ‘Robust methods for estimating pose and a sensitivity analysis’, CVGIP: Image Understand.,1994, 60, (3), pp. 313342.
    15. 15)
      • 15. Christy, S., Horaud, R.: ‘Iterative pose computation from line correspondences’, Comput. Vis. Image Understand., 1999, 73, pp. 137144.
    16. 16)
      • 16. Horaud, R., Dornaika, F., Lamiroy, B.: ‘Object pose: the link between weak perspective, paraperspective, and full perspective’, Int. J. Comput. Vis., 1997, 22, (2), pp. 173189.
    17. 17)
      • 17. Hanek, R., Navab, N., Appel, M.: ‘Yet another method for pose estimation: A probabilistic approach using points lines and cylinders’. IEEE Confe. on Computer Vision and Pattern Recognition, 1999.
    18. 18)
      • 18. David, P., DeMenthon, D., Duraiswami, R., et al: ‘Simultaneous pose and correspondence determination using line features’. IEEE Conf. on Computer Vision and Pattern Recognition, 2003, pp. 424431.
    19. 19)
      • 19. David, P., DeMenthon, D., Duraiswami, R., et al: ‘SoftPOSIT : Simultaneous Pose and Correspondence Determination’. European Conf. on Computer Vision, 2002, pp. 698714.
    20. 20)
      • 20. Zhang, X., Zhang, Z., Li, Y., et al: ‘Robust camera pose estimation from unknown or known line correspondences’, Appl. Opt., 2012, 51, (7), pp. 936948.
    21. 21)
      • 21. Intel: ‘Open source computer vision library’, 2014, available at http://opencv.willowgarage.com/wiki/.
    22. 22)
      • 22. von Gioi Rafael, G., Jérémie, J., Morel, J., et al: ‘LSD: a fast line segment detector with a false detection control’, IEEE Trans. Pattern Anal. Mach. Intell., 2010, 32, (4), pp. 722732.
    23. 23)
      • 23. Rawlings, J.O., Pantula, S.G., Dickey, D.A.: ‘Applied regression analysis: a research tool’ (Springer, 1998).
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cvi.2015.0099
Loading

Related content

content/journals/10.1049/iet-cvi.2015.0099
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address