Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

Classification via ensembles of basic thresholding classifiers

Classification via ensembles of basic thresholding classifiers

For access to this article, please select a purchase option:

Buy article PDF
$19.95
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Computer Vision — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

The authors present a sparsity-based algorithm, basic thresholding classifier (BTC), for classification applications which is capable of identifying test samples extremely rapidly and performing high classification accuracy. They introduce a sufficient identification condition (SIC) under which BTC can identify any test sample in the range space of a given dictionary. By using SIC, they develop a procedure which provides a guidance for the selection of threshold parameter. By exploiting rapid classification capability, they propose a fusion scheme in which individual BTC classifiers are combined to produce better classification results especially when very small number of features is used. Finally, they propose an efficient validation technique to reject invalid test samples. Numerical results in face identification domain show that BTC is a tempting alternative to sparsity-based classification algorithms such as greedy orthogonal matching pursuit and l 1-minimisation.

References

    1. 1)
      • 16. Foucart, S., Rauhut, H.: ‘A mathematical introduction to compressive sensing’ (Springer, 2013).
    2. 2)
      • 13. Tropp, J.A., Gilbert, A.C.: ‘Signal recovery from random measurements via orthogonal matching pursuit’, IEEE Trans. Inf. Theory, 2007, 53, (12), pp. 46554666.
    3. 3)
      • 20. Tropp, J.A.: ‘Greed is good: algorithmic results for sparse approximation’, IEEE Trans. Inf. Theory, 2004, 50, (10), pp. 22312242.
    4. 4)
      • 2. Belhumeur, P.N., Hespanha, J.P., Kriegman, D.: ‘Eigenfaces vs. fisherfaces: recognition using class specific linear projection’, IEEE Trans. Pattern Anal. Mach. Intell., 1997, 19, (7), pp. 711720.
    5. 5)
      • 9. Chen, Y., Nasrabadi, N.M., Tran, T.D.: ‘Hyperspectral image classification using dictionary-based sparse representation’, IEEE Trans. Geosci. Remote Sens., 2011, 49, (10), pp. 39733985.
    6. 6)
      • 6. Osborne, M.R., Presnell, B., Turlach, B.A.: ‘A new approach to variable selection in least squares problems’, IMA J. Numer. Anal., 2000, 20, (3), pp. 389403.
    7. 7)
      • 5. Yang, A.Y., Sastry, S.S., Ganesh, A., et al: ‘Fast l1-minimization algorithms and an application in robust face recognition: a review’. 17th IEEE Int. Conf. on Image Processing (ICIP), 2010, pp. 18491852.
    8. 8)
      • 14. Shi, Q., Eriksson, A., Van Den Hengel, A., et al: ‘Is face recognition really a compressive sensing problem?’. IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), 2011, pp. 553560.
    9. 9)
      • 17. Johnson, W.B., Lindenstrauss, J.: ‘Extensions of Lipschitz mappings into a Hilbert space’, Contemp. Math., 1984, 26, (1), pp. 189206.
    10. 10)
      • 27. Galar, M., Fernández, A., Barrenechea, E., et al: ‘Drcw-ovo: distance-based relative competence weighting combination for one-vs-one strategy in multi-class problems’, Pattern Recognit., 2015, 48, (1), pp. 2842.
    11. 11)
      • 21. Eldar, Y.C., Kuppinger, P., Bolcskei, H.: ‘Block-sparse signals: uncertainty relations and efficient recovery’, IEEE Trans. Signal Process., 2010, 58, (6), pp. 30423054.
    12. 12)
      • 3. Huang, K., Aviyente, S.: ‘Sparse representation for signal classification’. Advances in Neural Information Processing Systems, 2006, pp. 609616.
    13. 13)
      • 22. Woźniak, M., Graña, M., Corchado, E.: ‘A survey of multiple classifier systems as hybrid systems’, Inf. Fusion, 2014, 16, pp. 317.
    14. 14)
      • 18. Mairal, J., Bach, F., Ponce, J., et al: ‘Online learning for matrix factorization and sparse coding’, J. Mach. Learn. Res., 2010, 11, pp. 1960.
    15. 15)
      • 25. Cyganek, B.: ‘One-class support vector ensembles for image segmentation and classification’, J. Math. Imaging Vis., 2012, 42, (2-3), pp. 103117.
    16. 16)
      • 12. Zou, J., Li, W., Huang, X., et al: ‘Classification of hyperspectral urban data using adaptive simultaneous orthogonal matching pursuit’, J. Appl. Remote Sens., 2014, 8, (1), pp. 085 099:1085 099:14.
    17. 17)
      • 23. Krawczyk, B., Woźniak, M., Cyganek, B.: ‘Clustering-based ensembles for one-class classification’, Inf. Sci., 2014, 264, pp. 182195.
    18. 18)
      • 4. Wright, J., Yang, A.Y., Ganesh, A., et al: ‘Robust face recognition via sparse representation’, IEEE Trans. Pattern Anal. Mach. Intell., 2009, 31, (2), pp. 210227.
    19. 19)
      • 11. Zhang, H., Li, J., Huang, Y., et al: ‘A nonlocal weighted joint sparse representation classification method for hyperspectral imagery’, IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens., 2014, 7, (6), pp. 20562065.
    20. 20)
      • 1. Turk, M., Pentland, A.: ‘Eigenfaces for recognition’, J. Cogn. Neurosci., 1991, 3, (1), pp. 7186.
    21. 21)
      • 7. Fawzi, A., Davies, M., Frossard, P.: ‘Dictionary learning for fast classification based on soft thresholding’, Int. J. Comput. Vis., 2015, 114, (2), pp. 306321.
    22. 22)
      • 8. Shi, Q., Li, H., Shen, C.: ‘Rapid face recognition using hashing’. IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), 2010, pp. 27532760.
    23. 23)
      • 30. Spacek, L.: ‘Collection of facial images’. Available at http://cswww.essex.ac.uk/mv/allfaces/index.html, accessed September 2007.
    24. 24)
      • 28. Cohen, J.: ‘A coefficient of agreement for nominal scales’, Educ. Psychol. Meas., 1960, 20, (1), pp. 3746.
    25. 25)
      • 15. Rauhut, H., Schnass, K., Vandergheynst, P.: ‘Compressed sensing and redundant dictionaries’, IEEE Trans. Inf. Theory, 2008, 54, (5), pp. 22102219.
    26. 26)
      • 24. Krawczyk, B., Woźniak, M., Herrera, F.: ‘On the usefulness of one-class classifier ensembles for decomposition of multi-class problems’, Pattern Recognit., 2015, 48, (12), pp. 39693982.
    27. 27)
      • 19. Golub, G.H., Hansen, P.C., O'Leary, D.P.: ‘Tikhonov regularization and total least squares’, SIAM J. Matrix Anal. Appl., 1999, 21, (1), pp. 185194.
    28. 28)
      • 26. Yang, A.Y., Wright, J., Ma, Y., et al: ‘Feature selection in face recognition: a sparse representation perspective’. Technical Report, UC Berkeley Tech Report UCB/EECS-2007-99, 2007.
    29. 29)
      • 10. Chen, Y., Nasrabadi, N., Tran, T.: ‘Hyperspectral image classification via kernel sparse representation’, IEEE Trans. Geosci. Remote Sens., 2013, 51, (1), pp. 217231.
    30. 30)
      • 29. Viola, P., Jones, M.: ‘Rapid object detection using a boosted cascade of simple features’. Proc. of the 2001 IEEE Computer Society Conf. on Computer Vision and Pattern Recognition, 2001, vol. 1, pp. 511518.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cvi.2015.0077
Loading

Related content

content/journals/10.1049/iet-cvi.2015.0077
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address