Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

Parameter-adaptive nighttime image enhancement with multi-scale decomposition

Parameter-adaptive nighttime image enhancement with multi-scale decomposition

For access to this article, please select a purchase option:

Buy article PDF
$19.95
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Computer Vision — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

As a challenging problem, image enhancement plays an important role in computer vision applications and has been widely studied. As one of the most difficult issues of image enhancement, outdoor nighttime image enhancement suffers from noise amplification easily. To solve this problem, this study proposes a parameter-adaptive nighttime image enhancement method with multi-scale decomposition. The main contributions of this work are threefold. First, the authors find out that noises in different scales are various, and their method decomposes an input image into three high-frequency layers and a background layer accordingly. Second, the authors’ method enhances each high-frequency layer using adaptive parameters based on the characteristics of noises. Third, the proposed method maps the background layer to make it suitable to present details. Experiment results demonstrate that the proposed method can suppress noises as well as improve details effectively.

References

    1. 1)
      • 19. Powell, P.G., Bayer, B.E.: ‘A method for the digital enhancement of unsharp, grainyphotographic images’. Proc. Int. Conf. on Electronic Image Processing, 1982, pp. 179183.
    2. 2)
      • 16. Yilmaz, A., Javed, O., Shah, M.: ‘Object tracking: a survey’, ACM Comput. Surv., 2006, 38, (4), pp. 81-93.
    3. 3)
      • 7. Abdullah-Al-Wadud, M., Kabir, Md.H.: ‘A dynamic histogram equalization for image contrast enhancement’, IEEE Trans. Consum. Electron., 2007, 53, (2), pp. 539600.
    4. 4)
      • 26. Avcibas, I., Sankur, B., Sayood, K.: ‘Statistical evaluation of image quality measures’, J. Electron. Imag., 2002, 11, (2), pp. 206223.
    5. 5)
      • 24. Sezan, M.I., Yip, K.-L., Daly, S.J.: ‘Uniform perceptual quantization: applications to digital radiography’, IEEE Trans. Syst. Man Cybern., 1987, 17, (4), pp. 622634.
    6. 6)
      • 18. Shvayster, H., Peleg, S.: ‘Inversion of picture operators’, Pattern Recognit. Lett., 1987, 5, pp. 4661.
    7. 7)
      • 14. Guan, Y.-P.: ‘Spatio-temporal motion-based foreground segmentation and shadow suppression’, IET Comput. Vis., 2010, 4, (1), pp. 5060.
    8. 8)
      • 6. Sen, D., Pal, S.K.: ‘Automatic exact histogram specification for contrast enhancement and visual system based quantitative evaluation’, IEEE Trans. Image Process., 2011, 20, (5), pp. 12111220.
    9. 9)
      • 15. Xu, M., Ellis, T., Godsill, S.J., et al: ‘Visual tracking of partially observable targets with suboptimal filtering’, IET Comput. Vis., 2011, 5, (1), pp. 113.
    10. 10)
      • 3. Provenzi, E., Gatta, C., Fierro, M., et al: ‘A spatially variant white-patch and grey-world method for color image enhancement driven by local contrast’, IEEE Trans. Pattern Anal. Mach. Intell., 2008, 30, (10), pp. 17571770.
    11. 11)
      • 23. Chou, C.-H., Li, Y.-C.: ‘A perceptually tuned subbandimage coder based on the measure of just-noticeable-distortion profile’, IEEE Trans. Circuits Syst. Video Technol., 1995, 5, (6), pp. 467476.
    12. 12)
      • 25. Demirel, H., Ozcinar, C., Anbarjafari, G.: ‘Satellite image contrast enhancement using discrete wavelet transform and singular value decomposition’, IEEE Geosci. Remote Sens. Lett., 2010, 7, (2), pp. 333337.
    13. 13)
      • 4. Wang, C., Ye, Z.: ‘Brightness preserving histogram equalization with maximum entropy: a variational perspective’, IEEE Trans. Consum. Electron., 2005, 51, (4), pp. 13261334.
    14. 14)
      • 1. Meylan, L., Süsstrunk, S.: ‘High dynamic range image rendering with a retinex-based adaptive filter’, IEEE Trans. Instrum. Meas., 2006, 15, (9), pp. 28202830.
    15. 15)
      • 9. Arici, T., Dikbas, S., Altunbasak, Y.: ‘A histogram modification framework and its application for image contrast enhancement’, IEEE Trans. Image Process., 2009, 18, (9), pp. 19211935.
    16. 16)
      • 20. Rosenfeld, A.: ‘Multiresolution image processing and analysis’ (Springer-Verlag, 1984).
    17. 17)
      • 22. Hu, Y., Li, B., Zheng, J.: ‘An adaptive image enhancement based on the vector closed operations’. IEEE Int. Conf. on Image and Graphics, 2007, pp. 7580.
    18. 18)
      • 11. Gilboa, G., Sochen, N., Zeevi, Y.Y.: ‘Image enhancement and denoising by complex diffusion processes’, IEEE Trans. Pattern Anal. Mach. Intell., 2004, 26, (8), pp. 10201036.
    19. 19)
      • 2. Chen, S., Beghdadi, A.: ‘Natural enhancement of color image’, EURASIP J. Image Video Process., 2010, 2010, (2), pp. 1-19, article ID 175203.
    20. 20)
      • 12. Deng, G.: ‘A generalized unsharp masking algorithm’, IEEE Trans. Image Process., 2011, 20, (5), pp. 12491261.
    21. 21)
      • 5. Ibrahim, H., Kong, N.: ‘Brightness preserving dynamic histogram equalization for image contrast enhancement’, IEEE Trans. Consum. Electron., 2007, 53, (4), pp. 17521758.
    22. 22)
      • 28. Wang, S., Zheng, J., Hu, H., et al: ‘Naturalness preserved enhancement algorithm for non-uniform illumination images’, IEEE Trans. Image Process., 2013, 22, (9), pp. 35383548.
    23. 23)
      • 10. Bettahar, S., Stambouli, A.B., Lambert, P., et al: ‘PDE-based enhancement of color images in RGB space’, IEEE Trans. Image Process., 2012, 21, (5), pp. 25002512.
    24. 24)
      • 27. Hautiere, N., Tarel, J.-P., Aubert, D., et al: ‘Blind contrast enhancement assessment by gradient ratioing at visible edges’, Image Anal. Stereol., 2008, 27, 2, pp. 8795.
    25. 25)
      • 13. Wu, X.: ‘A linear programming approach for optimal contrast-tone mapping’, IEEE Trans. Image Process., 2011, 20, (5), pp. 12621272.
    26. 26)
      • 21. Deng, G., Cahill, L.W.: ‘Multiscale image enhancement using the logarithmic image processing model’, Electron. Lett., 1993, 29, (3), pp. 803804.
    27. 27)
      • 8. Thomas, G., Flores-Tapia, D., Pistorius, S.: ‘Histogram specification: a fast and flexible method to process digital images’, IEEE Trans. Instrum. Meas., 2011, 60, (5), pp. 15651578.
    28. 28)
      • 17. Deng, G., Cahill, L.W.: ‘Image enhancement using the log-ratio approach’. IEEE Conf. Record of the 28th Asilomar Conference on Signals, Systems and Computers, 1994, vol. 1, pp. 198202.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cvi.2015.0048
Loading

Related content

content/journals/10.1049/iet-cvi.2015.0048
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address