http://iet.metastore.ingenta.com
1887

Genetic algorithm-optimised structure of convolutional neural network for face recognition applications

Genetic algorithm-optimised structure of convolutional neural network for face recognition applications

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Computer Vision — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Proposing a proper method for face recognition is still a challenging subject in biometric and computer vision applications. Although some reliable systems were introduced under relatively controlled conditions, their recognition rate is not satisfactory in the general settings. This is especially true when there are variations in pose, illumination, and facial expression. To alleviate these problems, a hybrid face recognition system is proposed which benefits from the superiority of both convolutional neural network (CNN) and support vector machine (SVM). To this end, first a genetic algorithm is employed to find the optimum structure of CNN. Then, the performance of the system is improved by replacing the last layer of CNN with an ensemble of SVMs. Finally, using concepts of error correction, decision is made. The potential of CNN as a trainable feature extractor provides a flexible recognition system that can recognise faces with variations in pose and illumination. Simulation results show that the system achieves good recognition rate and is robust against variations in terms of facial expressions, occlusion, noise, and illuminations.

References

    1. 1)
      • 1. Senior, A.W., Bolle, R.M.: ‘Face recognition and its application’, in Zhang, David D. (Ed.): ‘Biometric solutions’ (Springer, 2002).
    2. 2)
      • 2. Hassaballah, M., Aly, S.: ‘Face recognition: challenges, achievements and future directions’, IET Comput. Vis., 2015, 9, (4), pp. 614626.
    3. 3)
      • 3. Ding, C., Tao, D.: ‘A comprehensive survey on pose-invariant face recognition’, arXiv preprint arXiv:1502.04383, 2015.
    4. 4)
      • 4. Brunelli, R., Poggio, T.: ‘Face recognition: features versus templates’, IEEE Trans. Pattern Anal. Mach. Intell., 1993, 15, (10), pp. 10421052.
    5. 5)
      • 5. Takacs, B.: ‘Comparing face images using the modified Hausdorff distance’, Pattern Recognit., 1998, 31, (12), pp. 18731881.
    6. 6)
      • 6. Heisele, B., Ho, P., Wu, J., et al: ‘Face recognition: component-based versus global approaches’, Comput. Vis. Image Underst., 2003, 91, (1), pp. 621.
    7. 7)
      • 7. Price, J.R., Gee, T.F.: ‘Face recognition using direct, weighted linear discriminant analysis and modular subspaces’, Pattern Recognit., 2005, 38, (2), pp. 209219.
    8. 8)
      • 8. Penev, P.S., Atick, J.J.: ‘Local feature analysis: a general statistical theory for object representation’, Netw., Comput. Neural Syst., 1996, 7, (3), pp. 477500.
    9. 9)
      • 9. Samaria, F.S., Harter, A.C.: ‘Parameterisation of a stochastic model for human face identification’. Proc. of the Second IEEE Workshop on Applications of Computer Vision, 1994, 1994.
    10. 10)
      • 10. Perronnin, F., Dugelay, J.-L., Rose, K.: ‘A probabilistic model of face mapping with local transformations and its application to person recognition’, IEEE Trans. Pattern Anal. Mach. Intell., 2005, 27, (7), pp. 11571171.
    11. 11)
      • 11. Abusham, E.A.: ‘Face verification using local graph structure (LGS)’. Int. Symp. on Biometrics and Security Technologies (ISBAST), 2014, 2014.
    12. 12)
      • 12. Abdullah, M.F.A., Sayeed, M.S., Muthu, K.S., et al: ‘Face recognition with symmetric local graph structure (SLGS)’, Expert Syst. Appl., 2014, 41, (14), pp. 61316137.
    13. 13)
      • 13. Duffner, S., Garcia, C.: ‘Face recognition using non-linear image reconstruction’. IEEE Conf. Advanced Video and Signal Based Surveillance, 2007. AVSS 2007, 2007.
    14. 14)
      • 14. Taigman, Y., Yang, M., Ranzato, M.A., et al: ‘Deepface: closing the gap to human-level performance in face verification’. IEEE Conf. Computer Vision and Pattern Recognition (CVPR), 2014, 2014.
    15. 15)
      • 15. Taigman, Y., Yang, M., Ranzato, M.A., et al: ‘Web-scale training for face identification’, arXiv preprint arXiv:1406.5266, 2014.
    16. 16)
      • 16. Schroff, F., Kalenichenko, D., Philbin, J.: ‘Facenet: a unified embedding for face recognition and clustering’, arXiv preprint arXiv:1503.03832, 2015.
    17. 17)
      • 17. Zhou, E., Cao, Z., Yin, Q.: ‘Naive-deep face recognition: touching the limit of LFW benchmark or not?’, arXiv preprint arXiv:1501.04690, 2015.
    18. 18)
      • 18. Zhang, Y., Zhao, D., Sun, J., et al: ‘Adaptive convolutional neural network and it's application in face recognition’, Neural Process. Lett., 2015, pp. 111.
    19. 19)
      • 19. Ding, C., Tao, D.: ‘Robust face recognition via multimodal deep face representation’, IEEE Trans. Multimedia, 2015, 17, (11), pp. 20492058.
    20. 20)
      • 20. Ding, C., Choi, J., Tao, D., et al: ‘Multi-directional multi-level dual-cross patterns for robust face recognition’, arXiv preprint arXiv:1401.5311, 2014.
    21. 21)
      • 21. Ojala, T., Pietikäinen, M., Harwood, D.: ‘A comparative study of texture measures with classification based on featured distributions’, Pattern Recognit., 1996, 29, (1), pp. 5159.
    22. 22)
      • 22. Wiskott, L., Fellous, J.-M., Kuiger, N., et al: ‘Face recognition by elastic bunch graph matching’, IEEE Trans. Pattern Anal. Mach. Intell., 1997, 19, (7), pp. 775779.
    23. 23)
      • 23. Turk, M.A., Pentland, A.P.: ‘Face recognition using eigenfaces’. Computer Vision and Pattern Recognition, 1991. Proc. CVPR'91, IEEE Computer Society Conf. on, 1991.
    24. 24)
      • 24. Belhumeur, P.N., Hespanha, J.P., Kriegman, D.: ‘Eigenfaces vs. Fisherfaces: recognition using class specific linear projection’, IEEE Trans. Pattern Anal. Mach. Intell., 1997, 19, (7), pp. 711720.
    25. 25)
      • 25. Bartlett, M.S., Movellan, J.R., Sejnowski, T.J.: ‘Face recognition by independent component analysis’, IEEE Trans. Neural Netw., 2002, 13, (6), pp. 14501464.
    26. 26)
      • 26. Visani, M., Garcia, C., Jolion, J.-M.: ‘Normalized radial basis function networks and bilinear discriminant analysis for face recognition’. IEEE Conf. on Advanced Video and Signal Based Surveillance, 2005. AVSS 2005, 2005.
    27. 27)
      • 27. Cevikalp, H., Neamtu, M., Wilkes, M., et al: ‘Discriminative common vectors for face recognition’, IEEE Trans. Pattern Anal. Mach. Intell., 2005, 27, (1), pp. 413.
    28. 28)
      • 28. Cootes, T.F., Edwards, G.J., Taylor, C.J.: ‘Active appearance models’, IEEE Trans. Pattern Anal. Mach. Intell., 2001, 23, (6), pp. 681685.
    29. 29)
      • 29. Liu, Y.-H., Chen, Y.-T.: ‘Face recognition using total margin-based adaptive fuzzy support vector machines’, IEEE Trans. Neural Netw., 2007, 18, (1), pp. 178192.
    30. 30)
      • 30. Pentland, A., Moghaddam, B., Starner, T.: ‘View-based and modular eigenspaces for face recognition’. Computer Vision and Pattern Recognition, 1994. Proc. CVPR'94, 1994 IEEE Computer Society Conf. on, 1994.
    31. 31)
      • 31. Heisele, B., Serre, T., Pontil, M., et al: ‘Component-based face detection’. Computer Vision and Pattern Recognition, 2001. CVPR 2001. Proc. of the 2001 IEEE Computer Society Conf. on, 2001).
    32. 32)
      • 32. Mandal, S., Dhara, B.C.: ‘A hybrid face recognition method based on structural and holistic features’. Seventh Int. Conf. on Advances in Pattern Recognition, 2009. ICAPR'09, 2009.
    33. 33)
      • 33. Liu, Z., Liu, C.: ‘Fusion of color, local spatial and global frequency information for face recognition’, Pattern Recognit., 2010, 43, (8), pp. 28822890.
    34. 34)
      • 34. Ghasemzadeh, H., Khass, M.T., Arjmandi, M.K.: ‘Audio steganalysis based on reversed psychoacoustic model of human hearing’, Digital Signal Process., 2016, 51, pp. 133141.
    35. 35)
      • 35. Ghasemzadeh, H., Khass, M.T., Arjmandi, M.K., et al: ‘Detection of vocal disorders based on phase space parameters and Lyapunov spectrum’, Biomed. Signal Process. Control, 2015, 22, pp. 135145.
    36. 36)
      • 36. LeCun, Y., Bottou, L., Bengio, Y., et al: ‘Gradient-based learning applied to document recognition’, Proc. IEEE, 1998, 86, (11), pp. 22782324.
    37. 37)
      • 37. Ghasemzadeh, H.: ‘A metaheuristic approach for solving Jigsaw puzzles’. Iranian Conf. on Intelligent Systems (ICIS), 2014, 2014.
    38. 38)
      • 38. Ramadan, R.M., Abdel-Kader, R.F.: ‘Face recognition using particle swarm optimization-based selected features’, Int. J. Signal Process. Image Process. Pattern Recognit., 2009, 2, (2), pp. 5165.
    39. 39)
      • 39. Sarawat Anam, M., Islam, S., Kashem, M., et al: ‘Face recognition using genetic algorithm and back propagation neural network’. Proc. of the Int. Multi Conf. of Engineers and Computer Scientists, 2009.
    40. 40)
      • 40. Gen, M., Cheng, R.: ‘Genetic algorithms and engineering optimization’ (John Wiley & Sons, 2000).
    41. 41)
      • 41. Blickle, T., Thiele, L.: ‘A comparison of selection schemes used in genetic algorithms’. TIK-Report, 1995.
    42. 42)
      • 42. De Jong, K.A.: ‘Analysis of the behavior of a class of genetic adaptive systems’, 1975.
    43. 43)
      • 43. Duda, R.O., Hart, P.E., Stork, D.G.: ‘Pattern classification’ (John Wiley & Sons, 2012).
    44. 44)
      • 44. Chang, C.-C., Lin, C.-J.: ‘LIBSVM: a library for support vector machines’, ACM Trans. Intell. Syst. Technol. (TIST), 2011, 2, (3), p. 27.
    45. 45)
      • 45. Hurwitz, J.S.: ‘Error-correcting codes and applications to large scale classification systems’ (Massachusetts Institute of Technology, 2009).
    46. 46)
      • 46. Ghani, R.: ‘Using error-correcting codes for text classification’. ICML, 2000.
    47. 47)
      • 47. Dietterich, T.G., Bakiri, G.: ‘Solving multiclass learning problems via error-correcting output codes’, J. Artif. Intell. Res., 1995, 2, pp. 263286.
    48. 48)
      • 48. Ferng, C.-S., Lin, H.-T.: ‘Multilabel classification using error-correcting codes of hard or soft bits’, IEEE Trans. Neural Netw. Learn. Syst., 2013, 24, (11), pp. 18881900.
    49. 49)
      • 49. Berger, A.: ‘Error-correcting output coding for text classification’. IJCAI-99: Workshop on Machine Learning for Information Filtering, 1999.
    50. 50)
      • 50. Emambakhsh, M., Gao, J., Evans, A.: ‘Noise modelling for denoising and 3d face recognition algorithms performance evaluation’, IET Comput. Vis., 2015, 28, (9), pp. 15191524.
    51. 51)
      • 51. Singha, A., Bhowmik, M.K., Dhar, P., et al: ‘Analysis and performance evaluation of ica-based architectures for face recognition’, in Barneva, Reneta P., Bhattacharya, Bhargab B., Brimkov, Valentin E. (Eds.): ‘Combinatorial image analysis’ (Springer, 2015).
    52. 52)
      • 52. Huang, R., Pavlovic, V., Metaxas, D.N.: ‘A hybrid face recognition method using Markov random fields’. Proc. of the 17th Int. Conf. on Pattern Recognition, 2004. ICPR 2004, 2004.
    53. 53)
      • 53. Liu, Z., Pu, J., Xu, M., et al: ‘Face recognition via weighted two phase test sample sparse representation’, Neural Process. Lett., 2015, 41, (1), pp. 4353.
    54. 54)
      • 54. Qu, X., Kim, S., Cui, R., et al: ‘Linear collaborative discriminant regression classification for face recognition’, J. Visual Commun. Image Represent., 2015, 31, pp. 312319.
    55. 55)
      • 55. Chen, X., Fan, K., Liu, W., et al: ‘Discriminative structure discovery via dimensionality reduction for facial image manifold’, Neural Comput. Appl., 2015, 26, (2), pp. 373381.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cvi.2015.0037
Loading

Related content

content/journals/10.1049/iet-cvi.2015.0037
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address