access icon free Shape recognition using orientational and morphological scale-spaces of curvatures

In this study, a scale-invariant representation for closed planar curves (silhouettes) is proposed. The orientations of all points within the Gaussian scale-space of the curve are extracted. This orientation scale-space is used to create the silhouette orientation image in which the positions of each pixel indicate the curve's pixel positions and scales, whereas the colour represents orientation. The representation is extracted for multiple levels of the morphological scale-space of the silhouette. The proposed representation is invariant to scale and transformable under planar rotation. Using linear and non-linear distance learning methods, experiments on the MPEG7, ETH80 and Kimia shape datasets were conducted, with results indicating an advanced recognition capability.

Inspec keywords: image colour analysis; shape recognition; Gaussian processes; mathematical morphology

Other keywords: ETH80; planar rotation; Gaussian scale-space; scale-invariant representation; linear distance learning method; closed planar curve; orientation scale-space; MPEG7; shape recognition; Kimia shape dataset; silhouette orientation image; nonlinear distance learning method; morphological scale-spaces

Subjects: Other topics in statistics; Image recognition; Other topics in statistics; Computer vision and image processing techniques

References

    1. 1)
    2. 2)
    3. 3)
    4. 4)
    5. 5)
    6. 6)
    7. 7)
    8. 8)
    9. 9)
    10. 10)
    11. 11)
    12. 12)
    13. 13)
    14. 14)
      • 7. Tu, Z., Yuille, A.L.: ‘Shape matching and recognition-using generative models and informative features’. European Conf. on Computer Vision (ECCV), 2004, pp. 195209.
    15. 15)
      • 17. Yang, X., Koknar-Tezel, S., Latecki, L.J.: ‘Locally constrained diffusion process on locally densified distance spaces with applications to shape retrieval’. IEEE Conf. on Computer Vision and Pattern Recognition, 2009.
    16. 16)
      • 11. Leibe, B., Schiele, B.: ‘Analyzing appearance and contour based methods for object categorization’. IEEE Conf. on Computer Vision and Pattern Recognition, 2003, pp. 409415.
    17. 17)
    18. 18)
      • 34. Awrangjeb, M., Lu, G., Murshed, M.: ‘An affine resilient curvature scale-space corner detector’. 32nd IEEE Int. Conf. Acoustics, Speech and Signal Processing (ICASSP 2007), 2007, pp. 12331236.
    19. 19)
    20. 20)
      • 25. Jackway, P.T.: ‘Morphological scale-space’, Pattern Recognit., 1992, 3, pp. 252255.
    21. 21)
      • 18. He, X.C., Yung, N.H.C.: ‘Corner detector based on global and local curvature properties’, Opt. Eng., 2008, 47, pp. 112.
    22. 22)
    23. 23)
    24. 24)
    25. 25)
    26. 26)
      • 9. Liu, T., Geiger, D.: ‘Visual deconstruction: recognizing articulated objects’. Energy Minimization Methods in Computer Vision and Pattern Recognition (EMMCVPR), 1997, pp. 295309.
    27. 27)
      • 31. Jalba, A.C., Wilkinson, M.H.F., Roerdink, J.B.T.M.: ‘Shape representation and recognition through morphological curvature scale spaces’, IEEE Trans. I, 2006, 15, pp. 331341.
    28. 28)
      • 3. Mokhtarian, F., Buber, M.: ‘Curvature scale space representation: theory, applications, and MPEG-7 standardization’ (Kluwer Academic, Norwell, MA, 2003).
    29. 29)
    30. 30)
    31. 31)
    32. 32)
      • 32. Latecki, L.J., Lakamper, R., Eckhardt, U.: ‘Shape descriptors for non-rigid shapes with a single closed contour’. IEEE Conf. on Computer Vision and Pattern Recognition, 2000, pp. 424429.
    33. 33)
    34. 34)
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cvi.2015.0012
Loading

Related content

content/journals/10.1049/iet-cvi.2015.0012
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading