http://iet.metastore.ingenta.com
1887

Cardiac image segmentation by random walks with dynamic shape constraint

Cardiac image segmentation by random walks with dynamic shape constraint

For access to this article, please select a purchase option:

Buy article PDF
$19.95
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Computer Vision — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

The quantitative analysis of the left ventricle (LV) contractile function is one of the key steps in the assessment of cardiovascular disease. Such analysis greatly depends on the accurate delineation of LV boundary from cardiac sequences. However, segmentation of the LV still remains a challenging problem due to its subtle boundary, occlusion, and image inhomogeneity. To overcome such difficulties, the authors propose a novel segmentation method by incorporating a dynamic shape constraint into the weighting function of the random walks segmentation algorithm. This approach involves iterative updates on the intermediate result to achieve the desired solution. The inclusion of a shape constraint restricts the solution space of the segmentation result to handle misleading information that may come from noise, weak boundaries and clutter, leading to increased robustness of the algorithm. The authors describe the details of the proposed method and demonstrate its effectiveness in segmenting the LV from real cardiac magnetic resonance (CMR) image sets. The experimental results demonstrate that the proposed method obtains better segmentation performance than the standard method.

References

    1. 1)
    2. 2)
    3. 3)
    4. 4)
    5. 5)
    6. 6)
    7. 7)
    8. 8)
    9. 9)
    10. 10)
    11. 11)
    12. 12)
    13. 13)
      • 13. Dakua, S.P., Sahambi, J.S.: ‘Modified active contour model and random walk approach for left ventricular cardiac MR image segmentation’, Int. J. Numerical Methods Biomed. Eng., 2011, 27, (9), pp. 13501361.
    14. 14)
    15. 15)
    16. 16)
    17. 17)
    18. 18)
      • 18. Mahapatra, D., Sun, Y.: ‘Orientation histograms as shape priors for left ventricle segmentation using graph cuts’. Proc. of MICCAI 2011, 2011, vol. 6893, pp. 420427.
    19. 19)
    20. 20)
      • 20. Baudin, P.Y., Azzabou, N., Carlier, P.G., et al: ‘Prior knowledge, random walks and human skeletal muscle segmentation’. Proc. of MICCAI 2012, 2012, vol. 7510, pp. 569576.
    21. 21)
      • 21. Baudin, P.Y., Azzabou, N., Carlier, P.G., et al: ‘Manifold-enhanced segmentation through random walks on linear subspace priors’. Proc. of BMVC 2012, 2012, pp. 110.
    22. 22)
      • 22. Cui, H., Wang, X., Fulham, M., et al: ‘Prior knowledge enhanced random walk for lung tumor segmentation from low-contrast CT images’. Proc. of EMBS 2013, 2013, pp. 60716074.
    23. 23)
    24. 24)
    25. 25)
    26. 26)
    27. 27)
      • 27. Radau, P., Lu, Y., Connelly, K., et al: ‘Evaluation framework for algorithms segmenting short axis cardiac MRI’. MICCAI 2009 Workshop on Cardiac MR Left Ventricle Segmentation Challenge, MIDAS Journal, 2009. Available at: http://smial.sri.utoronto.ca/lv_challenge/home.html.
    28. 28)
      • 28. Yang, X., Su, Y., Wan, M., et al: ‘Left ventricle segmentation by dynamic shape constrained random walks’. Proc. of EMBS 2014, 2014, pp. 47234726.
    29. 29)
      • 29. Yang, X., Yeo, S.Y., Lim, C., et al: ‘A framework for auto-segmentation of left ventricle from magnetic resonance images’. Proc. of APCOM&ISCM 2013, 2013, Available at: http://www.sci-en-tech.com/apcom2013/APCOM2013-Proceedings/PDF_FullPaper/1121_XuleiYang.pdf.
    30. 30)
      • 30. Grady, L.: ‘Random walks MATLAB implementation source codes’. Available at: http://cns.bu.edu/~lgrady/software.
    31. 31)
    32. 32)
    33. 33)
    34. 34)
      • 34. Constantinides, C., Roullot, E., Lefort, M., et al: ‘Fully automated segmentation of the left ventricle applied to cine MR images: description and results on a database of 45 subjects’. Proc. of EMBS 2012, 2012, pp. 32073210.
    35. 35)
      • 35. Uzunbas, M., Zhang, S., Pohl, K., et al: ‘Segmentation of myocardium using deformable regions and graph cuts’. Proc. of ISBI 2012, 2012, pp. 254257.
    36. 36)
    37. 37)
    38. 38)
    39. 39)
      • 39. Jolly, M.P.: ‘Fully automatic left ventricle segmentation in cardiac cine MR images using registration and minimum surfaces’. MICCAI 2009 Workshop on Cardiac MR Left Ventricle Segmentation Challenge, MIDAS Journal, 2009. Available at http://hdl.handle.net/10380/3114.
    40. 40)
      • 40. Wijnhout, J., Hendriksen, D., Van Assen, H., et al: ‘LV challenge LKEB contribution: fully automated myocardial contour detection’. MICCAI 2009 Workshop on Cardiac MR Left Ventricle Segmentation Challenge, MIDAS Journal, 2009. Available at http://hdl.handle.net/10380/3115.
    41. 41)
      • 41. Lu, Y., Radau, P., Connelly, K., et al: ‘Automatic image-driven segmentation of left ventricle in cardiac cine MRI’. MICCAI 2009 Workshop on Cardiac MR Left Ventricle Segmentation Challenge, MIDAS Journal, 2009. Available at http://hdl.handle.net/10380/3109.
    42. 42)
      • 42. Huang, S., Liu, J., Lee, L.C., et al: ‘Segmentation of the left ventricle from cine MR images using a comprehensive approach’. MICCAI 2009 Workshop on Cardiac MR Left Ventricle Segmentation Challenge, MIDAS Journal, 2009. Available at http://hdl.handle.net/10380/3121.
    43. 43)
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cvi.2014.0450
Loading

Related content

content/journals/10.1049/iet-cvi.2014.0450
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address