http://iet.metastore.ingenta.com
1887

Addressing the illumination challenge in two-dimensional face recognition: a survey

Addressing the illumination challenge in two-dimensional face recognition: a survey

For access to this article, please select a purchase option:

Buy article PDF
$19.95
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Computer Vision — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Uncontrolled illumination is one of the most widely researched and most encountered face recognition challenges in recent years. In this study, the authors propose the division of algorithms into two categories: (i) relighting and (ii) unlighting. Relighting methods try to match the probe's illumination conditions using a subset of representative gallery images, while unlighting methods seek to suppress the variations. A total of 64 state-of-the-art methods are summarised and categorised in each of the groups. To make this work concise and easy to follow, they restricted themselves to selected conferences/journals and they limited the number of approaches reviewed. Also, eight past state-of-the-art approaches are used in both identification and verification experiments. However, only significant reported results from all methods were compared and organised in tables. The author's main objective is not to provide an exhaustive analysis of each category, but to present a collection of papers that can be useful in identifying research directions. Results indicate that unlighting methods are a better and a practical solution to address illumination challenges.

References

    1. 1)
    2. 2)
    3. 3)
      • 3. Zou, X., Kittler, J., Messer, K.: ‘Illumination invariant face recognition: A survey’. Proc. IEEE First Int. Conf. on Biometrics Theory, Applications and Systems, Washington, DC, 27–29 September 2007, pp. 18.
    4. 4)
    5. 5)
      • 5. Zhao, X., Shah, S., Kakadiaris, I.: ‘Illumination normalization using self-lighting ratios for 3D-2D face recognition’. Proc. European Conf. on Computer Vision Workshop, Firenze, Italy, 7–13 October 2012, pp. 220229.
    6. 6)
      • 6. Li, Y., Wang, C., Ao, X.: ‘Illumination processing in face recognition’, in Oravec, M. (Ed.): ‘Face recognition’ (InTech, 2010), pp. 187214.
    7. 7)
      • 7. Štruc, V., Pavešic, N.: ‘Photometric normalization techniques for illumination invariance’. IGI Advances in Face Image Analysis: Techniques and Technologies, 2011, pp. 279300.
    8. 8)
    9. 9)
      • 9. Jaiswal, A., Agrawal, R., Kumar, N.: ‘Performance evaluation of linear subspace methods for face recognition under illumination variation’. Proc. ACM Fourth Int. Conf. on Computer Science and Software Engineering, Montreal, Canada, 16–18 May 2011, pp. 103110.
    10. 10)
      • 10. Zhang, J., Xie, X.: ‘A study on the effective approach to illumination-invariant face recognition based on a single image’, in Zheng, W.-S., Sun, Z., Wang, Y., Chen, X., Yuen, P., Lai, J. (Eds.): ‘Biometric recognition’ (Springer Berlin Heidelberg, 2012), vol. 7701, pp. 3341.
    11. 11)
      • 11. Chen, H., Belhumeur, P., Jacobs, D.: ‘In search of illumination invariants’. Proc. IEEE Conf. on Computer Vision and Pattern Recognition, Hilton Head Island, SC, 13–15 June 2000, vol. I, pp. 254261.
    12. 12)
      • 12. Saban, M., Sanderson, C.: ‘On local features for face verification’. Tech. Rep. IDIAP-RR 04-36, IDIAP, 2004.
    13. 13)
    14. 14)
    15. 15)
      • 15. Short, J., Kittler, J., Messer, K.: ‘A comparison of photometric normalisation algorithms for face verification’. Proc. Sixth IEEE Int. Conf. and Workshops on Automatic Face and Gesture Recognition, Seoul, Korea, 17–19 May 2004, pp. 254254.
    16. 16)
    17. 17)
      • 17. Rahman, Z., Woodell, G., Jobson, D.: ‘A comparison of the multiscale retinex with other image enhancement techniques’. Proc. 50th IS and T Annual Conf., Boston, MA, May 1997, pp. 426431.
    18. 18)
      • 18. Wang, H., Li, S., Wang, Y.: ‘Face recognition under varying lighting conditions using self-quotient image’. Proc. Sixth IEEE Int. Conf. on Automatic Face and Gesture Recognition, Seoul, Korea, 17–19 May 2004, pp. 819824.
    19. 19)
    20. 20)
    21. 21)
    22. 22)
    23. 23)
      • 23. Mendez-Vazquez, H., Kittler, J., Chan, C., Garcia-Reyes, E.: ‘Photometric normalization for face recognition using local discrete cosine transform’, Int. J. Pattern Recogn. Artif. Intell., 2013, 27, (3), pp. 1360005:11360005:27.
    24. 24)
      • 24. Dai, D.-Q., Yan, H.: ‘Wavelets and face recognition’, in Delac, K., Grgic, M. (Eds.): ‘Face recognition’ (Vienna: I-TECH Education and Publishing, 2007), pp. 5974.
    25. 25)
      • 25. Du, S., Ward, R.: ‘Wavelet-based illumination normalization for face recognition’. Proc. IEEE Int. Conf. on Image Processing, Genoa, Italy, 11–14 September 2005, vol. 2, pp. 954957.
    26. 26)
    27. 27)
    28. 28)
    29. 29)
      • 29. Vu, N.-S., Caplier, A.: ‘Illumination-robust face recognition using retina modeling’. Proc. 16th IEEE Int. Conf. on Image Processing, Cairo, Egypt, 7–11 November 2009, pp. 32893292.
    30. 30)
    31. 31)
    32. 32)
      • 32. Elhabian, S., Farag, A.: ‘Analytic bilinear appearance subspace construction for modeling image irradiance under natural illumination and non-Lambertian reflectance’. Proc. IEEE Conf. on Computer Vision and Pattern Recognition, Columbus, OH, 25–27 June 2013, pp. 14461451.
    33. 33)
    34. 34)
    35. 35)
      • 35. Almaddah, A., Vural, S., Mae, Y., Ohara, K., Arai, T.: ‘Face relighting using discriminative 2D spherical spaces for face recognition’, Mach. Vis. Appl., 2013, 25, pp. 113.
    36. 36)
      • 36. Wang, Y., Liu, Z., Guo, B.: ‘Face synthesis’, in Li, S., Jain, A. (Eds.): ‘Handbook of face recognition’ (Springer London, 2011), pp. 521547.
    37. 37)
      • 37. Jia, Q., Fang, C., Wen, D., Ding, X.: ‘Generating face images under multiple illuminations based on a single front-lighted sample without 3D models’. Proc. IEEE Int. Conf. on Biometrics, Madrid, Spain, 4–7 June 2013, pp. 16.
    38. 38)
    39. 39)
      • 39. Xia, C., Chen, J., Yang, C., et al: ‘Scalable illumination robust face identification using harmonic representation’. Proc. SPIE Fifth Int. Conf. on Digital Image Processing, Beijing, China, 21 April 2013, pp. 88780Y:188780Y:6.
    40. 40)
      • 40. Chen, C.-P., Chen, C.-S.: ‘Lighting normalization with generic intrinsic illumination subspace for face recognition’. Proc. IEEE Tenth Int. Conf. on Computer Vision, Beijing, China, 17–21 October 2005, vol. 2, pp. 10891096.
    41. 41)
    42. 42)
    43. 43)
      • 43. Burnstone, J., Yin, H.: ‘Eigenlights: Recovering illumination from face images’, in Yin, H., Wang, W., Rayward-Smith, V. (Eds.): ‘Intelligent data engineering and automated learning’ (Springer Berlin Heidelberg, 2011), vol. 6936, pp. 490497.
    44. 44)
      • 44. Zhang, D., Yang, M., Feng, X.: ‘Sparse representation or collaborative representation: Which helps face recognition?’. Proc. IEEE Int. Conf. on Computer Vision, Barcelona, Spain, 6–13 November 2011, pp. 471478.
    45. 45)
      • 45. Zhang, Q., Li, B.: ‘Discriminative K-SVD for dictionary learning in face recognition’. Proc. IEEE Conf. on Computer Vision and Pattern Recognition, San Francisco, CA, 13–18 June 2010, pp. 26912698.
    46. 46)
      • 46. Hsu, G.-S., Lin, D.-Y.: ‘Face recognition using sparse representation with illumination normalization and component features’. Proc. IEEE Annual Summit and Conf. Asia-Pacific Signal and Information Processing Association, Kaohsiung, Taiwan, 29 October–1 November 2013, pp. 15.
    47. 47)
      • 47. Ma, L., Wang, C., Xiao, B., Zhou, W.: ‘Sparse representation for face recognition based on discriminative low-rank dictionary learning’. Proc. IEEE Conf. on Computer Vision and Pattern Recognition, Providence, RI, 16–21 June 2012, pp. 25862593.
    48. 48)
      • 48. Wang, B., Li, W., Liao, Q.: ‘Illumination variation dictionary designing for single-sample face recognition via sparse representation’, in Li, S., Saddik, A., Wang, M., et al (Eds.): ‘Advances in multimedia modeling’ (Springer, 2013), pp. 436445.
    49. 49)
      • 49. Patel, V., Wu, T., Biswas, S., Phillips, P., Chellappa, R.: ‘Illumination robust dictionary-based face recognition’. Proc. IEEE 18th Int. Conf. on Image Processing, Brussels, Belgium, 11–14 September 2011, pp. 777780.
    50. 50)
      • 50. Baradarani, A., Wu, Q.: ‘Illumination invariant human face recognition: frequency or resonance?’. Proc. IEEE Tenth IEEE Int. Conf. and Workshops on Automatic Face and Gesture Recognition, Shanghai, China, 22–26 April 2013, pp. 16.
    51. 51)
    52. 52)
      • 52. Lin, L., Chiu, C.-T.: ‘Low cost illumination invariant face recognition by down-up sampling self quotient image’. Proc. Annual Summit and Conf. Asia-Pacific Signal and Information Processing Association, Kaohsiung, Taiwan, 29 October–1 November 2013, pp. 16.
    53. 53)
    54. 54)
      • 54. Luo, Y., Guan, Y.-P., Zhang, C.-Q.: ‘A robust illumination normalization method based on mean estimation for face recognition’, ISRN Mach. Vis., 2013, 2013, pp. 516052:1516052:10.
    55. 55)
      • 55. Li, Y., Liu, X., Gao, Z.: ‘Shadow determination and compensation for face recognition’, Int. J. Mach. Learn. Cybern., 2013, 5, pp. 17.
    56. 56)
      • 56. Jie, Y., Li, W., Changqing, Q.: ‘Illumination processing recognition of face images based on improved retinex algorithm’, J. Multimedia, 2013, 8, (5), pp. 541547.
    57. 57)
      • 57. Bui, H.-N., Na, I.-S., Kim, S.-H.: ‘De-noising model for weberface-based and max-filter-based illumination invariant face recognition’, in Jeong, Y.-S., Park, Y.-H., Hsu, C.-H., Park, J. (Eds.): ‘Ubiquitous information technologies and applications’ (Springer, 2014), pp. 373380.
    58. 58)
    59. 59)
      • 59. Huang, N., Shen, Z., Long, S., et al: ‘The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis’. Proc. Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences, 1998, vol. 454, no. 1971, pp. 903995.
    60. 60)
      • 60. Vishwakarma, V.: ‘Illumination normalization using fuzzy filter in dct domain for face recognition’, Int. J. Mach. Learn. Cybern., 2013, 6, pp. 118.
    61. 61)
      • 61. Bayu, B., Miura, J.: ‘Fuzzy-based illumination normalization for face recognition’. Proc. IEEE Workshop on Advanced Robotics and its Social Impacts, Tokyo, Japan, 7–9 November 2013, pp. 131136.
    62. 62)
    63. 63)
    64. 64)
    65. 65)
      • 65. Chen, H., Tang, Y., Fang, B., Zhou, L.: ‘A fusion framework for face recognition under varying illumination based on multi-scale analysis’, Int. J. Wavelets Multiresolution Inf. Process., 2012, 10, (3), pp. 1250029:11250029:17.
    66. 66)
    67. 67)
      • 67. Zhao, M., Wang, Y., Shi, Z., Zhang, J.: ‘The discrete cosine transform (DCT) plus local normalization: a novel two-stage method for de-illumination in face recognition’, Opt. Appl., 2011, 41, (4), pp. 825839.
    68. 68)
      • 68. Goel, T., Nehra, V., Vishwakarma, V.: ‘Rescaling of low frequency DCT coefficients with Kernel PCA for illumination invariant face recognition’. Proc. IEEE Third Int. Advance Computing Conf., Ghaziabad, India, 22–23 February 2013, pp. 11771182.
    69. 69)
      • 69. Goel, T., Nehra, V., Vishwakarma, V.: ‘Illumination normalization using downscaling of low-frequency DCT coefficients in DWT domain for face recognition’. Proc. IEEE Sixth Int. Conf. on Contemporary Computing, Noida, India, 8–10 August 2013, pp. 295300.
    70. 70)
      • 70. Du, S., Shehata, M., Badawy, W., Rahman, C.: ‘Eliminating illumination effects by discrete cosine transform (DCT) coefficients’ attenuation and accentuation’, SPIE Image Process., Mach. Vis. Appl. VI, 2013, 8661, pp. 86610H:186610H:11.
    71. 71)
      • 71. Pu, S., Wang, H.: ‘Detail-enhance face illumination normalization based on LDCTWavelet’. Proc. Int. Conf. on Computer, Networks and Communication Engineering, Beijing, China, 23–24 May 2013, pp. 518524.
    72. 72)
      • 72. Naderi, S., Nasiri, J., Charkari, N., Kabir, E.: ‘Visual illumination compensation for face images using light mapping matrix’, IET Image Process., 2013, 7, (5), pp. 514522.
    73. 73)
      • 73. Lian, Z., Er, M., Li, J.: ‘A novel local illumination normalization approach for face recognition’, in Liu, D., Zhang, H., Polycarpou, M., Alippi, C., He, H. (Eds.): ‘Advances in neural networks’ (Springer, 2011), pp. 350355.
    74. 74)
    75. 75)
      • 75. Garcia, C., Zikos, G., Tziritas, G.: ‘A wavelet-based framework for face recognition’. Proc. Fifth European Conf. on Computer Vision, Freiburg, DE, 2–6 June 1998, pp. 8492.
    76. 76)
    77. 77)
      • 77. Yuan, X., Meng, Y., Wei, X.: ‘Illumination normalization based on homomorphic wavelet filtering for face recognition’, J. Inf. Sci. Eng., 2013, 29, pp. 579594.
    78. 78)
    79. 79)
      • 79. Manikantan, K., Shet, M., Patel, M., Ramachandran, S.: ‘DWT-based illumination normalization and feature extraction for enhanced face recognition’, Int. J. Eng. Technol., 2012, 1, (4), pp. 483504.
    80. 80)
      • 80. Cheng, Y., Li, Z., Jiao, L.: ‘Illumination normalization for face recognition under extreme lighting conditions’, in Yang, J., Fang, F., Sun, C. (Eds.): ‘Intelligent science and intelligent data engineering’ (Springer, 2013), pp. 491497.
    81. 81)
      • 81. Lai, Z.-R., Dai, D.-Q., Ren, C.-X.: ‘Face recognition under variable illumination by weighted-subband edge enhancement’, in Liu, C.-L., Zhang, C., Wang, L. (Eds.): ‘Pattern recognition’ (Springer, 2012), pp. 324331.
    82. 82)
    83. 83)
      • 83. Chen, L.-H., Yang, Y.-H., Chen, C.-S., Cheng, M.-Y.: ‘Illumination invariant feature extraction based on natural images statistics – Taking face images as an example’. Proc. IEEE Conf. on Computer Vision and Pattern Recognition, Colorado Springs, CO, 20–25 June 2011, pp. 681688.
    84. 84)
    85. 85)
    86. 86)
    87. 87)
      • 87. Zhu, J.-Y., Zheng, W.-S., Lai, J.-H.: ‘Logarithm gradient histogram: A general illumination invariant descriptor for face recognition’. Proc. IEEE Tenth Int. Conf. and Workshops on Automatic Face and Gesture Recognition, Shanghai, China, 22–26 April 2013, pp. 18.
    88. 88)
      • 88. Soyel, H., Ozmen, B., McOwan, P.: ‘Illumination robust face representation based on intrinsic geometrical information’. Proc. IET Conf. on Image Processing, London, UK, 3–4 July 2012, pp. 16.
    89. 89)
    90. 90)
      • 90. Han, S., Kim, J., Kim, C., Jo, J.: ‘Local illumination normalization and facial feature point selection for robust face recognition’, J. Mob. Embedded Distrib. Syst., 2013, 5, (1), pp. 610.
    91. 91)
      • 91. Ma, Y., Xia, S., Zheng, G., Ma, X.: ‘Illumination invariant face recognition based on nonsubsampled contourlet transform and NeighShrink denoise’, in Wang, F., Lei, J., Lau, R., Zhang, J. (Eds.): ‘Multimedia and signal processing’ (Springer, 2012), pp. 358366.
    92. 92)
    93. 93)
    94. 94)
      • 94. Bashier, H., Hoe, L., Han, P., Ping, L.: ‘A novel illumination normalization algorithm for face recognition’. Proc. IEEE Int. Conf. on Signal and Image Processing Applications, Melaka, Malaysia, 8–10 October 2013, pp. 402405.
    95. 95)
      • 95. Zhang, D., Pan, J., Tang, Y., Wang, C.: ‘Illumination invariant face recognition based on the new phase features’. Proc. IEEE Int. Conf. on Systems, Man and Cybernetics, Istanbul, Turkey, 10–13 October 2010, pp. 39093914.
    96. 96)
      • 96. Nowruzi, F., Balafar, M.A., Pashazadeh, S.: ‘Robust recognition against illumination variations based on SIFT’, in Su, C.-Y., Rakheja, S., Liu, H. (Eds.): ‘Intelligent robotics and applications’ (Springer Berlin Heidelberg, 2012), vol. 7508, pp. 503511.
    97. 97)
    98. 98)
      • 98. Biglari, M., Mirzaei, F., Ebrahimpour-Komeh, H.: ‘Illumination invariant face recognition using SQI and weighted LBP histogram’. Proc. IEEE First Iranian Conf. on Pattern Recognition and Image Analysis, Birjand, Iran, 6–8 March 2013, pp. 17.
    99. 99)
      • 99. Hong, P., Si-Yu, X., Li-Zuo, J., Liang-Zheng, X.: ‘Illumination invariant face recognition based on improved local binary pattern’. Proc. IEEE 30th Chinese Control Conf., Yantai, China, 22–24 July 2011, pp. 32683272.
    100. 100)
      • 100. Lian, Z., Er, M., Li, J.: ‘A novel face recognition approach under illumination variations based on local binary pattern’, in Real, P., Diaz-Pernil, D., Molina-Abril, H., Berciano, A., Kropatsch, W. (Eds.): ‘Computer analysis of images and patterns’ (Springer, 2011), pp. 8996.
    101. 101)
      • 101. Kim, D.-J., Lee, S.-H., Shon, M.-K., Kim, H., Ryu, N.: ‘Illumination-robust local pattern descriptor for face recognition’, in Jeong, H., Yen, N., Park, J. (Eds.): ‘Advanced in computer science and its applications’ (Springer, 2014), pp. 185190.
    102. 102)
    103. 103)
      • 103. Shakhnarovich, G., Moghaddam, B.: ‘Face recognition in subspaces’, in Li, S., Jain, A. (Eds.): ‘Handbook of face recognition’ (Springer London, 2011), pp. 1949.
    104. 104)
    105. 105)
      • 105. Banerjee, P., Banerjee, P.: ‘Phase-eigen subspace based illumination invariant face recognition using associative memory’. Proc. IEEE Int. Conf. on Computing and Communication Systems, Durgapur, India, 21–22 November 2012, pp. 15.
    106. 106)
      • 106. Ramachandra Murthy, K., Ghosh, A.: ‘An efficient illumination invariant face recognition technique using two dimensional linear discriminant analysis’. Proc. IEEE First Int. Conf. on Recent Advances in Information Technology, Dhanbad, India, 15–17 March 2012, pp. 6267.
    107. 107)
    108. 108)
    109. 109)
      • 109. Sim, T., Baker, S., Bsat, M.: ‘The CMU Pose, Illumination, and Expression (PIE) database’. Proc. IEEE Fifth Int. Conf. on Automatic Face and Gesture Recognition, Washington, DC, 20–21 May 2002, pp. 4651.
    110. 110)
    111. 111)
    112. 112)
    113. 113)
      • 113. Klontz, J., Klare, B., Klum, S., Jain, A., Burge, M.: ‘Open source biometric recognition’. Proc. IEEE Sixth Int. Conf. on Biometrics: Theory, Applications and Systems, Washington, DC, 29 September–2 October 2013, pp. 18.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cvi.2014.0086
Loading

Related content

content/journals/10.1049/iet-cvi.2014.0086
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address