http://iet.metastore.ingenta.com
1887

Indian topographical map symbols understanding system

Indian topographical map symbols understanding system

For access to this article, please select a purchase option:

Buy article PDF
$19.95
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Computer Vision — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Symbol understanding is a pre-requisite for reading and interpretation of any map. Thus, any topographic map-based automated system needs to understand generic symbols associated with the set of maps. The objective of this study was to develop an automated system for the understanding of Survey of India topographic map symbols. The system has been developed making use of shape analysis adopting a complex-valued chain coding method for representation of the (exterior) boundary of the symbol. Fourier discrete transform and autocorrelation function have been used for shape descriptions. Classification and recognition have been implemented through a template matching method based on similarity measures. The system has been trained with 150 samples of 20 Indian topographic symbols and tested for 200 samples of each of the 20 symbols extracted from sample maps. Experimental results showed that the proposed method has an overall recognition rate of 84.68% as well as the improved mean average precision of symbol recognition. However, understanding of interconnected and/or crowded symbols may be taken up as future scope of this work.

References

    1. 1)
      • 1. Zhang, Q.: ‘Modeling structure and patterns in road network generalization’. Workshop on generalization and multiple representations, Leicester, UK, 2004.
    2. 2)
      • 2. Volz, S., Walter, V.: ‘Linking different geospatial databases by explicit relations’, Geoinf. Sci. J., 2006, 6, (1), pp. 4149.
    3. 3)
    4. 4)
      • 4. Chen, H., Walter, V.: ‘Quality inspection and quality improvement of large spatial datasets’. GSDI 11 World Conference: Spatial Data Infrastructure Convergence: Building SDI Bridges to Address Global Challenges, 2009.
    5. 5)
      • 5. Wiemann, S., Bernard, B.: ‘Conflation services within spatial data infrastructures’. 13th AGILE Int. Conf. Geographic Information Science 2010, Portugal, 2010.
    6. 6)
      • 6. Anders, K.H., Fritsch, D.: ‘Automatic interpretation of digital maps for data revision’, Int. Archives of Photogrammetry and Remote Sensing 31 (Part B4), 1996, pp. 9094.
    7. 7)
      • 7. Walter, V.: ‘Object-wise classification of remote sensing data for change detection’, inHeipke, C., Pakzad, K., Willrich, F. (Eds.): ‘Integration of geodata and imagery for automated refinement and update of spatial databases’. ISPRS Journal of Photogrammetry and Remote Sensing, 2004, 58, (3–4), pp. 225238.
    8. 8)
    9. 9)
      • 9. Ejiri, M., Kakumoto, S., Miyatake, T., Shimada, S., Ichikawa, T.: ‘Automatic recognition of design drawings and maps’. Proc. 7th Int. Conf. Pattern Recognition, 1984, pp. 12961305.
    10. 10)
      • 10. Starr, L.E.: ‘Computer assisted cartography research and development report’ (International Cartography Association, 1984).
    11. 11)
    12. 12)
    13. 13)
    14. 14)
      • 14. Samet, H., Soffer, A.: ‘A legend driven geographical symbol recognition system’. Proc. 12th Int. Conf. Pattern Recognition, 1994, vol. 2, pp. 350355.
    15. 15)
    16. 16)
    17. 17)
      • 17. Chaing, Y., Knoblock, C., Chen, C.: ‘Automatic extraction of road intersections from raster maps, GIS'05’. Proc. 13th Annual International Workshop on Geographic Information Systems, 2005, pp. 267276.
    18. 18)
    19. 19)
    20. 20)
      • 20. Roy, P., Liados, J., Pal, U.: ‘Text/graphics separation in color maps’. Proc. Int. Conf. Computing: Theory and Applications (ICCTA'07), 2007, pp. 545551.
    21. 21)
      • 21. Davis, L.: ‘Two-dimensional shape representation’, inYoung, I., Fu, K.S., (Eds.): ‘Handbook of pattern recognition and image processing’. (Academic Press, 1986), pp. 233245.
    22. 22)
      • 22. Den Hartog, J., Ten Kate, T., Gebrands, J.: ‘Knowledge based segmentation for automatic map interpretation’. Graphics recognition: methods and applications, (Springer, Berlin, 1996), NCS 1072, pp. 159178.
    23. 23)
      • 23. Reiher, E., Li, Y., Donne, V.D., Lalonde, M., Hayne, C., Zhu, C.: ‘A system for efficient and robust map symbol recognition’. IEEE Proc. Int. Conf. Pattern Recognition (ICPR'96), 1996, pp. 783787.
    24. 24)
      • 24. Myers, M., Chen, G.P., DeCutins, J., Chen, E.: ‘Verification-based approach for automated text and feature extraction’, in ‘Graphics recognition: methods and applications’, (Berlin, Springer, 1996), LNCS 1072, pp. 190203.
    25. 25)
      • 25. Ventura, A.D., Schettini, R.: ‘Graphic symbol recognition using a signature technique’. Proc. 12th Int. Conf. Pattern Recognition (ICPR'94), Jerusalem, Israel,1994, pp. 533535.
    26. 26)
    27. 27)
    28. 28)
    29. 29)
    30. 30)
    31. 31)
    32. 32)
    33. 33)
      • 33. Persoon, E., Fu, K.: ‘Shape discrimination using Fourier descriptors’, IEEE Trans. SMC, 1977, 7, pp. 170179.
    34. 34)
    35. 35)
    36. 36)
      • 36. Palvlidis, T.: ‘Structural descriptions and graph grammars’, in Chang, S.K., Fu, K.S. (Eds.):Pictorial information system’ (Springer, New York, 1980).
    37. 37)
      • 37. Duda, R., Hart, P.: ‘Descriptions of line and shape’ (John Wiley, 1973), Ch. 9, pp. 327378.
    38. 38)
    39. 39)
    40. 40)
    41. 41)
    42. 42)
      • 42. Nevatia, R.: ‘Shape analysis and recognition’ (Prentice-Hall, 1982) pp. 6189.
    43. 43)
      • 43. Taza, A., Suen, C.: ‘Discrimination of planar shapes using shape matrices’, IEEE Trans. SMC, 1989, 19, pp. 12811289.
    44. 44)
      • 44. Young, I., Walker, J., Bowie, J.: ‘An analysis technique for biological shape’, Comput. Graph. Image Process., 1974, 25, pp. 357370.
    45. 45)
      • 45. Alvarez, S.A.: ‘An exact analytical relation among recall, precision, and classification accuracy in information retrieval’, Technical report BCCS-02-01. Computer Science Department, Boston College, 2002.
    46. 46)
    47. 47)
    48. 48)
      • 48. Richards, C.W., Hemami, H.: ‘Identification of three-dimensional objects using fourier descriptors of the boundary curve’, IEEE Trans. SMC, 1974, 4, pp. 371378.
    49. 49)
    50. 50)
      • 50. Zahn, C., Roskies, R.: ‘Fourier descriptors for plane closed curves’, Comput. Graph. Image Process., 1972, 21, pp. 269281.
    51. 51)
    52. 52)
      • 52. Cox, G.S.: ‘A review: template matching and measures of match in image processing’, 1995.
    53. 53)
      • 53. Cha, S.H.: ‘Comprehensive survey of distance/similarity measures between probability density functions’, Int. J. Math. Model Appl. Sci., 2007, 4, (1), pp. 300307.
    54. 54)
      • 54. Koo, J.H., Yoo, S.I.: ‘A structural matching for two-dimensional visual pattern inspection’. IEEE Int. Conf. Systems, Man, and Cybernetics, 1998, vol. 5, pp. 44294434.
    55. 55)
      • 55. Zhu, S., Hu, L., Zanibbi, R.: ‘Rotation-robust math symbol recognition and retrieval using outer contours and image subsampling’. Int. Conf. Document Analysis and Recognition (ICDAR), 2013.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cvi.2013.0311
Loading

Related content

content/journals/10.1049/iet-cvi.2013.0311
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address