access icon free Analysis of planar-motion segmentation using affine fundamental matrix

Various computer-vision applications involve estimation of multiple motions from images of dynamic scenes. The exact nature of 3D-object motions and the camera parameters are often not known a priori and therefore, the most general motion model (fundamental matrix) is applied. Although the estimation of fundamental matrix and its use for motion segmentation are established, the conditions for segmentation of different types of motions are largely unaddressed. In this study, we analysed the feasibility of motion segmentation using affine-fundamental matrix, focusing on a scene includes multiple planar-motions, viewed by an uncalibrated camera. We show that the successful segmentation of planar motion depends on several scene and motion parameters. Conditions to guarantee successful segmentation are proposed via extensive experiments using synthetic images. Experiments using real-image data were set up to examine the relevance of those conditions to the scenarios in real applications. The experimental results demonstrate the capability of the proposed conditions to correctly predict the outcome of several segmentation scenarios and show the relevance of those conditions in real applications. In practice, the success of motion segmentation could be predicted from obtainable scene and motion parameters. Therefore these conditions serve as a guideline for practitioners in designing motion-segmentation solutions.

Inspec keywords: cameras; Monte Carlo methods; image segmentation; matrix algebra; motion estimation; computer vision

Other keywords: affine fundamental matrix; three-dimensional-rigid object motions; computer vision; dynamic scene images; general motion model; camera optical-axis; planar-motion segmentation analysis; Monte Carlo statistical method; camera parameters; Monte Carlo simulation; multiple motion estimation; synthetic images

Subjects: Optical, image and video signal processing; Computer vision and image processing techniques; Algebra; Algebra; Monte Carlo methods; Image sensors; Monte Carlo methods

References

    1. 1)
      • 4. Ma, Y., Soatto, S., Kosecka, J., Sastry, S.S.: ‘An invitation to 3-D vision: from images to geometric models’ (Springer-Verlag, 2005).
    2. 2)
    3. 3)
    4. 4)
    5. 5)
      • 7. Mundy, J.L., Zisserman, A.: ‘Geometric invariance in computer vision’ (MIT Press, Cambridge, MA, USA, 1992).
    6. 6)
    7. 7)
      • 13. Basah, S.N., Hoseinnezhad, R., Bab-Hadiashar, A.: ‘Conditions for segmentation of motion with affine fundamental matrix’. Proc. of the Int. Symp. on Visual Computing ISVC, volume 5875 LNCS, Springer-Verlag, Berlin, Heidelberg, 2009, pp. I: 415424.
    8. 8)
      • 40. Bouguet, J.: Camera calibration toolbox for matlab. http://www.vision.caltech.edu/bouguetj/calib_doc/index.html.
    9. 9)
    10. 10)
      • 20. Vidal, R., Hartley, R.: ‘Motion segmentation with missing data using power factorization and GPCA’. Proc. of the IEEE Computer Society Conf. Computer Vision and Pattern Recognition CVPR, 2004, vol. II, pp. 310316.
    11. 11)
    12. 12)
      • 19. Wolf, L., Shashua, A.: ‘Two-body segmentation from two perspective views’. Proc. of the IEEE Computer Society Conf. on Computer Vision and Pattern Recognition CVPR, vol. I, 2001, pp. 263270.
    13. 13)
      • 3. Faugeras, O., Luong, Q.-T., Papadopoulou, T.: ‘The geometry of multiple images: the laws that govern the formation of images of a scene and some of their applications’ (MIT Press, Cambridge, MA, USA, 2001).
    14. 14)
      • 31. Hesami, R., Bab Hadiashar, A., Hoseinnezhad, R.: ‘A novel hierarchical technique for range segmentation of large building exteriors’. Proc. of the Int. Symp. on Visual Computing ISVC, 2007, (LNCS 4842), pp. II: 7585.
    15. 15)
      • 32. Torr, P.H.S., Murray, D.W.: ‘Stochastic motion clustering’. Proc. of the European Conf. on Computer Vision ECCV, Secaucus, NJ, USA, 1994, vol. II, pp. 328337.
    16. 16)
    17. 17)
      • 26. Klappstein, J., Stein, F., Franke, U.: ‘Detectability of moving objects using correspondences over two and three frames’. Proc. of the DAGM Conf. Pattern Recognition, Springer-Verlag, Berlin, Heidelberg, 2007, pp. 112121.
    18. 18)
    19. 19)
      • 42. Lowe, D.G.: Sift keypoint detector. http://www.cs.ubc.ca/lowe/keypoints/.
    20. 20)
    21. 21)
    22. 22)
    23. 23)
    24. 24)
      • 8. Xu, G., Zhang, Z.: ‘Epipolar geometry in stereo, motion, and object recognition: a unified approach’ (Kluwer Academic Publishers, Norwell, MA, USA, 1996).
    25. 25)
    26. 26)
    27. 27)
      • 12. N.H-H. Image sequences and datasets from Institut of Algorithm and Cognitive System, Universitat Karlsruhe. http://i21www.ira.uka.de/image_sequences/.
    28. 28)
      • 23. Vidal, R., Sastry, S.: ‘Optimal segmentation of dynamic scenes from two perspective views’. Proc. of the IEEE Computer Society Conf. Computer Vision and Pattern Recognition CVPR, 2003, vol. II, pp. 281286.
    29. 29)
    30. 30)
      • 4. Ma, Y., Soatto, S., Kosecka, J., Sastry, S.S.: ‘An invitation to 3-D vision: from images to geometric models’ (Springer-Verlag, 2005).
    31. 31)
      • 37. Evans, M., Hastings, N., Peacock, B.: ‘Statistical distributions’ (Wiley, 2000, 3rd edn.).
    32. 32)
    33. 33)
      • 2. Hartley, R., Zisserman, A.: ‘Multiple view geometry in computer vision’ (Cambridge University Press, Cambridge, UK, 2003, 2nd edn.).
    34. 34)
    35. 35)
    36. 36)
    37. 37)
    38. 38)
    39. 39)
      • 15. Shapiro, L.S., Zisserman, A., Brady, M.: ‘Motion from point matches using affine epipolar geometry’. Proc. of the European Conf. on Computer Vision ECCV, Springer, Secaucus, NJ, USA, 1994, vol. II, pp. 7384.
    40. 40)
      • 21. Vidal, R., Ma, Y., Piazzi, J.: ‘A new GPCA algorithm for clustering subspaces by fitting, differentiating and dividing polynomials’. Proc. of the IEEE Computer Society Conf. on Computer Vision and Pattern Recognition CVPR, 2004, pp. I: 510517.
    41. 41)
      • 16. Torr, P.H.S.: ‘Motion segmentation and outlier detection’. Phd thesis, Department of Engineering Science, University of Oxford, 1995.
    42. 42)
      • 28. Basah, S.N., Bab-Hadiashar, A., Hoseinnezhad, R.: ‘Conditions for segmentation of 2D translations of 3D objects’. Proc. of the Int. Conf. on Image Analysis and Processing ICIAP, 2009, (LNCS 5716), Berlin, Heidelberg, pp. 8291.
    43. 43)
      • 36. Weisstein, E.W.: ‘Harmonic addition theorem’. From MathWorld-Wolfram Web Resource http://mathworld.wolfram.com/HarmonicAdditionTheorem.html.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cvi.2013.0224
Loading

Related content

content/journals/10.1049/iet-cvi.2013.0224
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading