access icon free Robust local stereo matching under varying radiometric conditions

The authors present a local stereo matching algorithm whose performance is insensitive to changes in radiometric conditions between the input images. First, a prior on the disparities is built by combining the DAISY descriptor and Census filtering. Then, a Census-based cost aggregation with a self-adaptive window is performed. Finally, the maximum a-posteriori estimation is carried out to compute the disparity. The authors’ algorithm is compared with both local and global stereo matching algorithms (NLCA, ELAS, ANCC, AdaptWeight and CSBP) by using Middlebury datasets. The results show that the proposed algorithm achieves high-accuracy dense disparity estimations and is more robust to radiometric differences between input images than other algorithms.

Inspec keywords: radiometry; stereo image processing; filtering theory; image matching; maximum likelihood estimation

Other keywords: Census filtering; CSBP algorithm; robust local stereo matching algorithm; Census-based cost aggregation; NLCA algorithm; AdaptWeight algorithm; ELAS algorithm; self-adaptive window; maximum a-posteriori estimation; ANCC algorithm; radiometric condition; high-accuracy dense disparity estimation; Middlebury dataset; DAISY descriptor

Subjects: Other topics in statistics; Filtering methods in signal processing; Other topics in statistics; Image recognition; Computer vision and image processing techniques

References

    1. 1)
    2. 2)
    3. 3)
    4. 4)
    5. 5)
    6. 6)
    7. 7)
    8. 8)
    9. 9)
    10. 10)
      • 9. Kanade, T., Kano, H., Kimura, S., Yoshida, A., Oda, K.: ‘Development of a video-rate stereo machine’. IEEE Int. Conf. Intelligent Robots and Systems, 1995, vol. 3, pp. 95100.
    11. 11)
      • 5. Geiger, A., Roser, M., Urtasun, R.: ‘Efficient large-scale stereo matching’. Asian Conf. Computer Vision, 2010, pp. 2538.
    12. 12)
      • 8. Szeliski, R.: ‘Computer vision: algorithms and applications’, (Springer Press, 2010, 1st edn.).
    13. 13)
      • 28. Bleyer, M., Rhemann, C.: ‘Extracting 3D scene-consistent object proposals and depth from stereo images’. European Conf. Computer Vision, 2012, pp. 467481.
    14. 14)
      • 21. Kang, S.B., Szeliski, R., Chai, J.: ‘Handling occlusions in dense multi-view stereo’. IEEE Conf. Computer Vision and Pattern Recognition, 2001, pp. 103110.
    15. 15)
      • 27. Veksler, O.: ‘Reducing search space for stereo correspondence with graph cuts’. British Conf. Machine Vision, 2006, pp. 709719.
    16. 16)
      • 12. Tomasi, C., Manduchi, R.: ‘Bilateral filtering for gray and color images’. IEEE Int. Conf. Computer Vision, 1998, pp. 839846.
    17. 17)
      • 14. Heo, Y.S., Lee, K.M., Lee, S.U.: ‘Robust stereo matching using adaptive normalized cross-correlation’, IEEE Trans. Pattern Anal. Mach. Intell., 2011, 33, (4), pp. 807822 (doi: 10.1109/TPAMI.2010.136).
    18. 18)
      • 15. Hirschmuller, H.: ‘Stereo processing by semiglobal matching and mutual information’, IEEE Trans. Pattern Anal. Mach. Intell., 2008, 30, (2), pp. 328341 (doi: 10.1109/TPAMI.2007.1166).
    19. 19)
      • 7. Zabih, R., Woodfill, J.: ‘Non-parametric local transforms for computing visual correspondence’. European Conf. Computer Vision, 1994, pp. 151158.
    20. 20)
      • 17. Mei, X., Sun, X., Zhou, M., Jiao, S., Wang, H., Zhang, X.: ‘On building an accurate stereo matching system on graphics hardware’. IEEE Int. Conf. Computer Vision Workshops, 2011, pp. 467474.
    21. 21)
      • 25. Xu, L., Jia, J.: ‘Stereo matching: an outlier confidence approach’. European Conf. Computer Vision, 2008, pp. 775787.
    22. 22)
      • 2. Heo, Y.S., Lee, K.M., Lee, S.U.: ‘Illumination and camera invariant stereo matching’. IEEE Conf. Computer Vision and Pattern Recognition, 2008, pp. 18.
    23. 23)
      • 11. Mattoccia, S., Tombari, F., Di Stefano, L.: ‘Fast full-search equivalent template matching by enhanced bounded correlation’, IEEE Trans. Image Process., 2008, 17, (4), pp. 528538 (doi: 10.1109/TIP.2008.919362).
    24. 24)
      • 26. Wang, Z.F., Zheng, Z.G.: ‘A region based stereo matching algorithm using cooperative optimization’. IEEE Conf. Computer Vision and Pattern Recognition, 2008, pp. 18.
    25. 25)
      • 23. Kolmogorov, V., Zabih, R.: ‘Computing visual correspondence with occlusions using graph cuts’. IEEE Conf. Computer Vision and Pattern Recognition, 2001, pp. 508515.
    26. 26)
      • 18. Viola, P., Jones, M.J.: ‘Robust real-time face detection’, Int. J. Comput. Vis., 2004, 57, (2), pp. 137154 (doi: 10.1023/B:VISI.0000013087.49260.fb).
    27. 27)
      • 30. http://vision.middlebury.edu/stereo/, accessed May 2013..
    28. 28)
      • 20. Veksler, O.: ‘Fast variable window for stereo correspondence using integral images’. IEEE Conf. Computer Vision and Pattern Recognition, 2003, pp. 556561.
    29. 29)
      • 1. Yoon, K.-J.: ‘Stereo matching based on nonlinear diffusion with disparity-dependent support weights’, IET Comput. Vis., 2012, 6, (4), pp. 306313 (doi: 10.1049/iet-cvi.2011.0231).
    30. 30)
      • 3. Scharstein, D., Szeliski, R.: ‘A taxonomy and evaluation of dense two-frame stereo correspondence algorithms’, Int. J. Comput. Vis., 2002, 47, (1–3), pp. 742 (doi: 10.1023/A:1014573219977).
    31. 31)
      • 13. Hirschmuller, H., Scharstein, D.: ‘Evaluation of cost functions for stereo matching’. IEEE Conf. Computer Vision and Pattern Recognition, 2007, pp. 18.
    32. 32)
      • 24. Yang, Q., Wang, L., Ahuja, N.: ‘A constant-space belief propagation algorithm for stereo matching’. IEEE Conf. Computer Vision and Pattern Recognition, 2010, pp. 14581465.
    33. 33)
      • 22. Yoon, K.-J., Kweon, I.S.: ‘Adaptive support-weight approach for correspondence search’, IEEE Trans. Pattern Anal. Mach. Intell., 2006, 28, (4), pp. 650656 (doi: 10.1109/TPAMI.2006.70).
    34. 34)
      • 4. Yang, Q.: ‘A non-local cost aggregation method for stereo matching’. IEEE Conf. Computer Vision and Pattern Recognition, 2012, pp. 14021409.
    35. 35)
      • 19. Min, D., Lu, J., Do, M.N.: ‘A revisit to cost aggregation in stereo matching: how far can we reduce its computational redundancy?’. IEEE Int. Conf. Computer Vision, 2011, pp. 15671574.
    36. 36)
      • 29. Rhemann, C., Hosni, A., Bleyer, M., Rother, C., Gelautz, M.: ‘Fast cost-volume filtering for visual correspondence and beyond’. IEEE Conf. Computer Vision and Pattern Recognition, 2011, pp. 30173024.
    37. 37)
      • 16. Jung, I.L., Chung, T.Y., Sim, J.Y., Kim, C.S.: ‘Consistent stereo matching under varying radiometric conditions’, IEEE Trans. Multimedia, 2013, 15, pp. 5669 (doi: 10.1109/TMM.2012.2225041).
    38. 38)
      • 6. Tola, E., Lepetit, V., Fua, P.: ‘Daisy: an efficient dense descriptor applied to wide-baseline stereo’, IEEE Trans. Pattern Anal. Mach. Intell., 2010, 32, (5), pp. 815830 (doi: 10.1109/TPAMI.2009.77).
    39. 39)
      • 10. Simoncelli, E.P., Adelson, E.H., Heeger, D.J.: ‘Probability distributions of optical flow’. IEEE Conf. Computer Vision and Pattern Recognition, 1991, pp. 310315.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cvi.2013.0117
Loading

Related content

content/journals/10.1049/iet-cvi.2013.0117
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading