Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Gradient descent with adaptive momentum for active contour models

In active contour models (snakes), various vector force fields replacing the gradient of the original external energy in the equations of motion are a popular way to extract the object boundary. Gradient descent method is usually used to obtain the equations of motion by minimising the energy functional. However, it always suffers from local minimum in extracting complex geometries because of non-convex functional. Gradient descent method with adaptive momentum term is proposed in this study. First, an acceleration function of evolution is defined. Then, the adaptive momentum term is obtained by calculating the product between the edge stopping function and the defined acceleration function. Finally, adaptive momentum is compatible with the snakes. The edge stopping function is used to decide the influence region of the momentum, whereas the defined acceleration function determines the magnitude of the momentum. It is used to extract the complex geometries (such as deep concavity) when adding the adaptive momentum into some snakes, such as gradient vector field or vector field convolution snakes. On the other hand, the proposed method also accelerates the rate of convergence. It can be applied to extract a single object in real images. The experimental results show that the proposed method is effective and efficient.

References

    1. 1)
    2. 2)
    3. 3)
    4. 4)
    5. 5)
    6. 6)
    7. 7)
    8. 8)
    9. 9)
    10. 10)
    11. 11)
    12. 12)
    13. 13)
    14. 14)
    15. 15)
    16. 16)
    17. 17)
    18. 18)
    19. 19)
    20. 20)
    21. 21)
    22. 22)
    23. 23)
    24. 24)
    25. 25)
      • 29. Chambolle, A.: ‘An algorithm for total variation minimization and applications’, J. Math. Imaging Vis., 2004, 20, (1–2), pp. 8997.
    26. 26)
      • 24. Xie, S.L., Zeng, D.L., Zhou, Z.H., Zhang, J.: ‘Arranging and interpolating sparse unorganized feature points with geodesic circular arc’, IEEE Trans. Image Process., 2009, 18, (3), pp. 582595 (doi: 10.1109/TIP.2008.2010146).
    27. 27)
      • 30. Aujol, J.F., Gilboa, G., Chan, T., Osher, S.: ‘Structure-texture image decomposition-modeling, algorithms, and parameter selection’, Int. J. Comput. Vis., 2006, 67, (1), pp. 111136 (doi: 10.1007/s11263-006-4331-z).
    28. 28)
      • 13. Caselles, V., Kimmel, R., Sapiro, G.: ‘Geodesic active contour’, Int. J. Comput. Vis., 1997, 22, (1), pp. 6179 (doi: 10.1023/A:1007979827043).
    29. 29)
      • 28. [Online]. Available: http://www.dmforge.itn.liu.se/lsopt/.
    30. 30)
      • 27. Shao, H., Zheng, G.: ‘Convergence analysis of a back-propagation algorithm with adaptive momentum’, Neurocomputing, 2011, 74, (5), pp. 749752 (doi: 10.1016/j.neucom.2010.10.008).
    31. 31)
      • 14. Eric, N.M., William, A.B.: ‘Intelligent scissors for image composition’. Proc. ACM SIGGRAPH, 1995, pp. 191198.
    32. 32)
      • 2. Aubert, G., Kornprobst, P.: ‘Mathematical problems in image processing: partial differential equations and the calculi of variations’ (Springer, New York, 2006, 2nd edn.).
    33. 33)
      • 11. Brown, E., Chan, T., Bresson, X.: ‘Completely convex formulation of the Chan–Vese image segmentation model’, Int. J. Comput. Vis., 2012, 98, (1), pp. 103121 (doi: 10.1007/s11263-011-0499-y).
    34. 34)
      • 4. Xu, C., Prince, J.: ‘Snakes, shapes, and gradient vector flow’, IEEE Trans. Image Process., 1998, 7, (3), pp. 359369 (doi: 10.1109/83.661186).
    35. 35)
      • 26. Shao, H., Zheng, G.: ‘A new BP algorithm with adaptive momentum for FNNs training’. 2009 WRI Global Congress on Intelligent Systems (GCIS 2009), 2009, vol. 4, pp. 1620 (doi: 10.1109/GCIS.2009.136).
    36. 36)
      • 12. Osher, S., Sethian, J.: ‘Fronts propagating with curvature-dependent speed: algorithms based on Hamilton–Jacobi formulations’, J. Comput. Phys., 1988, 79, pp. 1249 (doi: 10.1016/0021-9991(88)90002-2).
    37. 37)
      • 18. Viterbi, A.: ‘Error bounds for convolutional codes and an asymptotically optimum decoding algorithm’, IEEE Trans. Inf. Theory, 1967, 13, (2/3), pp. 260269 (doi: 10.1109/TIT.1967.1054010).
    38. 38)
      • 6. Li, B., Acton, S.: ‘Active contour external force using vector field convolution for image segmentation’, IEEE Trans. Image Process., 2007, 16, (8), pp. 20962106 (doi: 10.1109/TIP.2007.899601).
    39. 39)
      • 5. Xu, C., Prince, J.: ‘Generalized gradient vector flow external forces for active contours’, Signal Process., 1998, 71, (2), pp. 131139 (doi: 10.1016/S0165-1684(98)00140-6).
    40. 40)
      • 8. Wang, T., Cheng, I., Basu, A.: ‘Fluid vector flow and applications in brain tumor segmentation’, IEEE Trans. Biomed. Eng., 2009, 56, (3), pp. 781789 (doi: 10.1109/TBME.2009.2012423).
    41. 41)
      • 20. Mumford, D., Shah, J.: ‘Optimal approximations by piecewise smooth functions and associated variational problems’, Commun. Pure. Appl. Math., 1989, 42, pp. 577685 (doi: 10.1002/cpa.3160420503).
    42. 42)
      • 7. Xie, X., Mirmehdi, M.: ‘MAC: magnetostatic active contour model’, IEEE Trans. Pattern Anal. Mach. Intell., 2008, 30, (4), pp. 632647 (doi: 10.1109/TPAMI.2007.70737).
    43. 43)
      • 19. Andersson, T., Lathen, G., Lenz, R., Borga, M.: ‘Modified gradient search for level set based image segmentation’, IEEE Trans. Image Process., 2013, 22, (2), pp. 621630 (doi: 10.1109/TIP.2012.2220148).
    44. 44)
      • 9. Chan, T., Vese, L.: ‘Active contours without edges’, IEEE Trans. Image Process., 2001, 10, (2), pp. 266277 (doi: 10.1109/83.902291).
    45. 45)
      • 1. Kass, M., Witkin, A., Terzopoulus, D.: ‘Snakes: active contour model’, Int. J. Comput. Vis., 1988, 1, (4), pp. 321331 (doi: 10.1007/BF00133570).
    46. 46)
      • 16. Williams, D., Shah, M.: ‘A fast algorithm for active contours and curvature estimation’, Comput. Vis. Graph. Image Understand., 1992, 55, (1), pp. 1426.
    47. 47)
      • 15. Amini, A., Weymouth, T.E., Jain, R.: ‘Using dynamic programming for solving variational problems in vision’, IEEE Trans. Pattern Anal. Mach. Intell., 1990, 12, (9), pp. 855867 (doi: 10.1109/34.57681).
    48. 48)
      • 21. Sum, K.W., Cheung, P.Y.S.: ‘Boundary vector field for parametric active contours’, Pattern Recognit., 2007, 40, (6), pp. 16351645 (doi: 10.1016/j.patcog.2006.11.006).
    49. 49)
      • 25. Qian, N.: ‘On the momentum term in gradient descent learning algorithms’, Neural Netw., 1999, 12, pp. 145151 (doi: 10.1016/S0893-6080(98)00116-6).
    50. 50)
      • 23. Wang, Y., Liu, L., Zhang, H., Cao, Z., Lu, S.: ‘Image segmentation using active contours with normally biased GVF external force’, IEEE Signal Process. Lett., 2010, 17, (10), pp. 875879 (doi: 10.1109/LSP.2010.2060482).
    51. 51)
      • 17. Mishra, A.K., Fieguth, P.W., Clausi, D.A.: ‘Decoupled active contour (DAC) for boundary detection’, IEEE Trans. Pattern Anal. Mach. Intell., 2011, 33, (2), pp. 310324 (doi: 10.1109/TPAMI.2010.83).
    52. 52)
      • 10. Bresson, X., Esedoglu, S., Vandergheynst, P., Thiran, J., Osher, S.: ‘Fast global minimization of the active contour/snake model’, J. Math. Imaging Vis., 2007, 28, (2), pp. 151167 (doi: 10.1007/s10851-007-0002-0).
    53. 53)
      • 22. Cheng, J., Foo, S.W.: ‘Dynamic directional gradient vector flow for snakes’, IEEE Trans. Image Process., 2006, 15, (6), pp. 15631571 (doi: 10.1109/TIP.2006.871140).
    54. 54)
      • 3. Nocedal, J., Wright, S.: ‘Numerical optimization’ (Springer, 2006, 2nd edn.).
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cvi.2013.0089
Loading

Related content

content/journals/10.1049/iet-cvi.2013.0089
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address