Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Augmented Lagrangian-based approach for dense three-dimensional structure and motion estimation from binocular image sequences

In this study, the authors propose a framework for stereo–motion integration for dense depth estimation. They formulate the stereo–motion depth reconstruction problem into a constrained minimisation one. A sequential unconstrained minimisation technique, namely, the augmented Lagrange multiplier (ALM) method has been implemented to address the resulting constrained optimisation problem. ALM has been chosen because of its relative insensitivity to whether the initial design points for a pseudo-objective function are feasible or not. The development of the method and results from solving the stereo–motion integration problem are presented. Although the authors work is not the only one adopting the ALMs framework in the computer vision context, to thier knowledge the presented algorithm is the first to use this mathematical framework in a context of stereo–motion integration. This study describes how the stereo–motion integration problem was cast in a mathematical context and solved using the presented ALM method. Results on benchmark and real visual input data show the validity of the approach.

http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cvi.2013.0017
Loading

Related content

content/journals/10.1049/iet-cvi.2013.0017
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address