Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Using vanishing points to estimate parameters of fisheye camera

This study presents an approach for estimating the fisheye camera parameters using three vanishing points corresponding to three sets of mutually orthogonal parallel lines in one single image. The authors first derive three constraint equations on the elements of the rotation matrix in proportion to the coordinates of the vanishing points. From these constraints, the rotation matrix is calculated under the assumption of the image centre known. The experimental results with synthetic images and real fisheye images validate this method. In contrast to the existing methods, the authors method needs less image information and does not know the three-dimensional reference point coordinates.

References

    1. 1)
      • 30. Goldreich, O.: ‘Computational complexity: a conceptual perspective’ (Cambridge University Press, 2010), available at http://www.en.wikipedia.org/wiki/Time_complexity.
    2. 2)
      • 30. Goldreich, O.: ‘Computational complexity: a conceptual perspective’ (Cambridge University Press, 2010), available at http://www.en.wikipedia.org/wiki/Time_complexity.
    3. 3)
      • 29. Zhu, H., Yang, P., Li, S.: Estimating fisheye camera parameters from homography. Science China: Information Science, 2012, 55, (9), pp. 21192127.
    4. 4)
      • 21. Kannala, J., Brandt, S.S.: ‘A generic camera model and calibration method for conventenal, wide-eye, and fish-eye lenses’, IEEE Trans. Pattern Anal. Mach. Intell., 2006, 28, (8), pp. 13351340 (doi: 10.1109/TPAMI.2006.153).
    5. 5)
      • 14. Ying, X., Hu, Z.: ‘Can we consider central catadioptric cameras and fisheye cameras within a unified imaging model’ (ECCV, 2004) pp. 442455.
    6. 6)
      • 13. Wu, Y., Hu, Z.: ‘Geometric invariants and applications under catadioptric camera model’. Proc. ICCV, 2005, vol. 1, pp. 15471554.
    7. 7)
      • 9. Babaee, K.V., Pourreza, H.R.: ‘Camera parameters estimation in soccer scenes on the basis of points at infinity’, IET Comput. Vis., 2012, 6, (2), pp. 133139 (doi: 10.1049/iet-cvi.2010.0107).
    8. 8)
      • 15. Scaramuzza, D., Martinelli, A., Siegwart, R.: ‘A flexible technique for accurate omnidirectional camera calibration and structure from motion’. Proc. IEEE Int. Conf. Computer Vision Systems, 2006.
    9. 9)
      • 28. Li, S., Hai, Y.: ‘Easy calibration of a blind-spot-free fisheye camera system using a scene of a parking space’, IEEE Trans. Intell. Transp. Syst., 2011, 12, (1), pp. 232242 (doi: 10.1109/TITS.2010.2085435).
    10. 10)
      • 25. Kruger, L., Wohler, C.: ‘Accurate chequerboard corner localisation for camera calibration’, Pattern Recognit. Lett., 2011, 32, (10), pp. 14281435 (doi: 10.1016/j.patrec.2011.04.002).
    11. 11)
      • 18. Bazin, J.C., Kweon, I.S., Demonceaux, C., Vasseur, P.: ‘Uav attitude estimation by vanishing points in catadioptric images’. IEEE Int. Conf. Robotics and Automation, 2008, pp. 27432749.
    12. 12)
      • 6. Avinash, N., Murali, S.: ‘Perspective geometry based single image camera calibration’, J. Math. Imaging Vis., 2008, 30, (3), pp. 221230 (doi: 10.1007/s10851-007-0052-3).
    13. 13)
      • 5. Gallagher, A.C.: ‘Using vanishing points to correct camera rotation in images’. Proc. Second Canadian Conf. Computer and Robot Vision, May 2005.
    14. 14)
      • 16. Mei, C., Rives, P.: ‘Single view point omnidirectional camera calibration from planar grids’. IEEE Int. Conf. Robotics and Automation, 2007, pp. 39453950.
    15. 15)
      • 3. Wilczkowiak, M., Sturm, P., Boyer, E.: ‘Using geometric constraints through parallelepipeds for calibration and 3D modeling’, Trans. Pattern Anal. Mach. Intell., 2005, 27, (2), pp. 194207 (doi: 10.1109/TPAMI.2005.40).
    16. 16)
      • 20. Micusík, B., Pajdla, T.: ‘Structure from motion with wide circular field of view cameras’, IEEE Trans. Pattern Anal. Mach. Intell., 2006, 28, (7), pp. 11351149 (doi: 10.1109/TPAMI.2006.151).
    17. 17)
      • 10. Nayar, S.: ‘Catadioptric omnidirectional camera’. IEEE Conf. Computer Vision and Pattern Recognition, 1997, pp. 482488.
    18. 18)
      • 19. Ho, T.H., Davis, C.C., Milner, S.D.: ‘Using geometric constraints for fisheye camera calibration’. Proc. IEEE OMNIVIS Workshop, 2005.
    19. 19)
      • 17. Chen, X., Yang, J., Waibel, A.: ‘Calibration of a hybrid camera network’. Proc. Ninth IEEE Int. Conf. Computer Vision, 2003, vol. 1, pp. 150155.
    20. 20)
      • 27. Li, W., Li, Y.F.: ‘Single-camera panoramic stereo imaging system with a fisheye lens and a convex mirror’, Opt. Express, 2011, 19, (7), pp. 58555867 (doi: 10.1364/OE.19.005855).
    21. 21)
      • 7. Mirzaei, F.M., Roumeliotis, S.: ‘Optimal estimation of vanishing points in a Manhattan world’. Proc. IEEE Int. Conf. Computer Vision, 2011, pp. 24542461.
    22. 22)
      • 2. Svedberg, D., Carlsson, S.: ‘Calibration, pose and novel views from single images of constrained scenes’, Pattern Recognit. Lett., 2000, 21, (13–14), pp. 11251133 (doi: 10.1016/S0167-8655(00)00073-8).
    23. 23)
      • 26. Ryberg, A., Lennartson, B., Christiansson, A.K., Ericsson, M., Asplund, L.: ‘Analysis and evaluation of a general camera model’, Comput. Vis. Image Underst., 2011, 115, (11), pp. 15031515 (doi: 10.1016/j.cviu.2011.06.009).
    24. 24)
      • 4. Hartley, R., Zisserman, A.: ‘Multiple view geometry in computer vision’ (Cambridge University press, 2003, 2nd edn.).
    25. 25)
      • 8. Homacek, M., Maierhofer, S.: ‘Extracting vanishing points across multiple views’. IEEE Conf. Computer Vision and Pattern Recognition, 2011, pp. 953960.
    26. 26)
      • 1. Caprile, B., Torre, V.: ‘Using vanishing points for camera calibration’, Int. J. Comput. Vis., 1990, 4, (2), pp. 127139 (doi: 10.1007/BF00127813).
    27. 27)
      • 22. Hughes, C., Denny, P., Glavin, M., Jones, E.: ‘Equidistant fish-eye calibration and rectification by vanishing point extraction’, IEEE Trans. Pattern Anal. Mach. Intell., 2010, 32, (12), pp. 22892296 (doi: 10.1109/TPAMI.2010.159).
    28. 28)
      • 11. Geyer, C., Daniilidis, K.: ‘Catadioptric camera calibration’, Int. J. Comput. Vis., 1999, pp. 398404.
    29. 29)
      • 12. Geyer, C., Daniilidis, K.: ‘Catadioptric projective geometry’, Int. J. Comput. Vis., 2001, 45, (3), pp. 223243 (doi: 10.1023/A:1013610201135).
    30. 30)
      • 24. Hansen, P., Corke, P., Boles, W.: ‘Wide-angle visual feature matching for outdoor localization’, Int. J. Robot. Res., 2010, 29, (2–3), pp. 267297 (doi: 10.1177/0278364909356484).
    31. 31)
      • 23. Liu, J.J., Phillips, C., Daniilidia, K.: ‘Video-based localization without 3D mapping for the visually impaired’. Proc. 2010 IEEE Computer Society Conf. Computer Vision and Pattern Recognition – Workshops, 2010, pp. 2330.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cvi.2013.0013
Loading

Related content

content/journals/10.1049/iet-cvi.2013.0013
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address