http://iet.metastore.ingenta.com
1887

access icon openaccess Weakly supervised learning of semantic colour terms

  • XML
    94.5146484375Kb
  • HTML
    99.7783203125Kb
  • PDF
    726.025390625Kb
Loading full text...

Full text loading...

/deliver/fulltext/iet-cvi/8/2/IET-CVI.2012.0210.html;jsessionid=1t7ags41os8pl.x-iet-live-01?itemId=%2fcontent%2fjournals%2f10.1049%2fiet-cvi.2012.0210&mimeType=html&fmt=ahah

References

    1. 1)
      • 1. Farhadi, A., Endres, I., Hoiem, D.: ‘Attribute-centric recognition for cross-category generalization’. CVPR, 2010.
    2. 2)
      • 2. Wang, Y., Mori, G.: ‘A discriminative latent model of object classes and attributes’. ECCV, 2010.
    3. 3)
      • 3. Lampert, C.H., Nickisch, H., Harmeling, S.: ‘Learning to detect unseen object classes by between-class attribute transfer’. CVPR, June 2009.
    4. 4)
      • 4. Yu, X., Aloimonos, Y.: ‘Attribute-based transfer learning for object categorization with zero/one training example’. ECCV, 2010.
    5. 5)
      • 5. Farhadi, A., Endres, I., Hoiem, D., Forsyth, D.: ‘Describing objects by their attributes’. CVPR, June 2009.
    6. 6)
      • 6. Guo, Z., Wang, Z.: ‘One-shot recognition using unsupervised attribute-learning’. Proc. 2010 Fourth Pacific-Rim Symp. on Image and Video Technology, 2010.
    7. 7)
      • 7. van DeWeijer, J., Schmid, C.: ‘Applying color names to image description’. Proc. 2007 IEEE Int. Conf. Image Processing, 2007, pp. 493496.
    8. 8)
      • 8. Russakovsky, O., Fei-fei, L.: ‘Attribute learning in large-scale datasets’. ECCV – Int. Workshop on Parts and Attributes, 2010.
    9. 9)
      • 9. Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ‘Imagenet: a large-scale hierarchical image database’. CVPR, 2009.
    10. 10)
      • 10. van de Weijer, J., Schmid, C., Verbeek, J., Larlus, D.: ‘Learning color names for real world applications’, IEEE Trans. Image Process., 2009, 18, (7), pp. 15121523 (doi: 10.1109/TIP.2009.2019809).
    11. 11)
      • 11. Ferrari, V., Zisserman, A.: ‘Learning visual attributes’, Adv. Neural Inf. Process. Syst., 2008, 20, pp. 433440.
    12. 12)
      • 12. van de Weijer, J., Schmid, C., Verbeek, J.: ‘Learning color names from real-world images’. CVPR, 2007.
    13. 13)
      • 13. Hofmann, T.: ‘Unsupervised learning by probabilistic latent semantic analysis’, Mach. Lear., 2001, 42, (1–2), pp. 177196 (doi: 10.1023/A:1007617005950).
    14. 14)
      • 14. Berlin, B., Kay, P.: ‘Basic color terms: their universality and evolution’, Anthropology, linguistics, psychology, (University of California Press, 1991).
    15. 15)
      • 15. Wang, G., Forsyth, D.: ‘Joint learning of visual attributes, object classes and visual saliency’. ICCV, 2009.
    16. 16)
      • 16. International Organization for Standardization: Geneva, Switzerland. Colorimetry – Part 4: CIE 1976 L*a*b* Colour space. ISO 11664-4:2008, 2008.
    17. 17)
      • 17. Larlus, D., Jurie, F.: ‘Latent mixture vocabularies for object categorization’. BMVC, September 2006.
    18. 18)
      • 18. Berg, T.L., Berg, A.C., Shih, J.: ‘Automatic attribute discovery and characterization from noisy web data’. ECCV, 2010.
    19. 19)
      • 19. Yanai, K., Barnard, K.: ‘Image region entropy: a measure of ‘visualness’ of web images associated with one concept’. ACM Multimedia, 2005.
    20. 20)
      • 20. Li, L., Ma, J.: ‘A BYY split-and-merge EM algorithm for Gaussian mixture learning’. Adv. Neural Netw. (ISNN), 2008.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cvi.2012.0210
Loading

Related content

content/journals/10.1049/iet-cvi.2012.0210
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address