http://iet.metastore.ingenta.com
1887

Locally discriminative stable model for visual tracking with clustering and principle component analysis

Locally discriminative stable model for visual tracking with clustering and principle component analysis

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Computer Vision — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

The challenge of visual tracking mainly comes from intrinsic appearance variations of the target and extrinsic environment changes around the target in a long duration, so the tracker that can simultaneously tolerate these variabilities is largely expected. In this study, the authors propose a new tracking approach based on discriminative stable regions (DSRs). The DSRs are obtained based on the criterion of maximal local entropy and spatial discrimination, which enables the tracker to handle well distractors and appearance variations. The collaborative tracking incorporated hierarchical clustering can tolerate motion noise and occlusions. In addition, as an efficient tool, the principle component analysis is used to discover the potential affine relation between DSR and the target, which timely adapts to the shape deformation of the target. Extensive experiments show that the proposed method achieves superior performance in many challenging target tracking tasks.

References

    1. 1)
      • 1. Sun, Z., Bebis, G., Miller, R.: ‘On-road vehicle detection: A review’, PAMI, 2006, 28, (5), pp. 694711 (doi: 10.1109/TPAMI.2006.104).
    2. 2)
      • 2. Race, D.G.C.: http://www.darpa.mil/grandchallenge, 2008.
    3. 3)
      • 3. Kim, M., Kumar, S., Pavlovic, V., Rowley, H.: ‘Face tracking and recognition with visual constraints in real-world videos’. CVPR, 2008, pp. 18.
    4. 4)
      • 4. Stamatia, G., Marco, V.S., Yang, G.Z.: ‘Probabilistic tracking of affine-invariant anisotropic region’, PAMI, 2013, 35, (1), pp. 130143 (doi: 10.1109/TPAMI.2012.81).
    5. 5)
      • 5. Yao, A.B., Wang, G.J., et al: ‘An incremental Bhattacharyya dissimilarity measure for particle filtering’, Pattern Recognit., 2010, 43, pp. 12441256 (doi: 10.1016/j.patcog.2009.09.024).
    6. 6)
      • 6. Avidan, S.: ‘Ensemble tracking’. CVPR, 2005, Vol. 2, pp. 494501.
    7. 7)
      • 7. Xie, H.X., Wang, Y.N., et al: ‘Multi-object visual tracking based on reversible jump Markov chain Monte Carlo’, IET Comput. Vis., 2011, 5, (5), pp. 282290 (doi: 10.1049/iet-cvi.2010.0086).
    8. 8)
      • 8. Zhang, C.L., Jing, Z.L., et al: ‘A dual-kernel-based tracking approach for visual target’, Science CHINA: Inf. Sci., 2012, 55, (3), pp. 566576 (doi: 10.1007/s11432-011-4543-x).
    9. 9)
      • 9. Horn, B.K., Schunck, B.G.: ‘Determining optical flow’, Artif. Intell., 1981, 17, pp. 185203 (doi: 10.1016/0004-3702(81)90024-2).
    10. 10)
      • 10. Comaniciu, D., Ramesh, V., Meer, P.: ‘Kernel-based object tracking’, PAMI, 2003, 25, (5), pp. 564577 (doi: 10.1109/TPAMI.2003.1195991).
    11. 11)
      • 11. Collins, R.T., Liu, Y.: ‘Online selection of discriminative tracking features’, PAMI, 2005, 27, (10), pp. 16311643 (doi: 10.1109/TPAMI.2005.205).
    12. 12)
      • 12. Grabner, H., Bischof, H.: ‘On-line boosting and vision’. CVPR, 2006, pp. 260267.
    13. 13)
      • 13. Kalal, Z., Matas, J., Mikolajczyk, K.: ‘P-n learning: Bootstrapping binary classifiers by structural constraints’. CVPR, 2010, pp. 4956.
    14. 14)
      • 14. Babenko, B., Yang, M.H., Belongie, S.: ‘Visual tracking with online multiple instance learning’. CVPR, 2009, pp. 983990.
    15. 15)
      • 15. Ross, D., Lim, J., Lin, R.S., Yang, M.H.: ‘Incremental learning for robust visual tracking’, Int. J. Comput. Vis., 2008, 77, (13), pp. 125141 (doi: 10.1007/s11263-007-0075-7).
    16. 16)
      • 16. Li, X., Hu, W.M., Zhang, Z.F., et al: ‘Robust visual tracking based on incremental tensor subspace learning’. Proc. CVPR, 2007, pp. 18.
    17. 17)
      • 17. Xue, M., Ling, H.B.: ‘Robust visual tracking using 1 minimization’. ICCV, 2009, pp. 14361443.
    18. 18)
      • 18. Adam, A., Rivlin, E., Shimshoni, I.: ‘Robust fragments-based tracking using the integral histogram’. CVPR, 2006, pp. 798805.
    19. 19)
      • 19. Shi, J., Tomasi, C.: ‘Good features to track’. CVPR, 1994, pp. 593600.
    20. 20)
      • 20. Zhou, H.Y., Yuan, Y., Shi, C.M.: ‘Object tracking using SIFT features and mean shift’, Comput. Vis. Image Underst., 2009, 113, pp. 345352 (doi: 10.1016/j.cviu.2008.08.006).
    21. 21)
      • 21. Miao, Q., Wang, G.J., et al: ‘A new framework for on-line object tracking based on SURF’, Pattern Recognit. Lett., 2011, 32, (13), pp. 15641571 (doi: 10.1016/j.patrec.2011.05.017).
    22. 22)
      • 22. Michael, D., Horst, B.: ‘Efficient maximally stable extremal region (MSER) tracking’. CVPR, 2006, Vol. 1, pp. 553560.
    23. 23)
      • 23. Yang, M., Yuan, J.S., Wu, Y.: ‘Spatial selection for attentional visual tracking’. CVPR, 2007, pp. 18.
    24. 24)
      • 24. Fan, J., Wu, Y., Dai, S.: ‘Discriminative spatial attention for robust tracking’. ECCV, 2010, Vol. 6311, pp. 480493.
    25. 25)
      • 25. Sugimura, D., Kitani, K., et al: ‘Using individuality to track individuals: Clustering individual trajectories in crowds using local appearance and frequency trait’. ICCV, 2009, pp. 14671474.
    26. 26)
      • 26. Duda, R.O., Hart, P.E., Stork, D.G.: ‘Pattern classification’ (John Wiley & Sons Press, 2000, 2nd edn.).
    27. 27)
      • 27. Hare, S., SaKari, A., Torr, P.: ‘Struck: structured output tracking with kernels’. ICCV, 2011, pp. 263270.
    28. 28)
      • 28. Wang, Q., Chen, F., et al: ‘An experimental comparison of online object tracking algorithms’, Wavelets Sparsity XIV, 2011, 8138, pp. 111.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cvi.2012.0180
Loading

Related content

content/journals/10.1049/iet-cvi.2012.0180
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address