Adaptive region matching for region-based image retrieval by constructing region importance index

Adaptive region matching for region-based image retrieval by constructing region importance index

For access to this article, please select a purchase option:

Buy article PDF
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Your details
Why are you recommending this title?
Select reason:
IET Computer Vision — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

This study deals with the problem of similarity matching in region-based image retrieval (RBIR). A novel visual similarity measurement called adaptive region matching (ARM) has been developed. For decreasing negative influence of interference regions and important information loss simultaneously, a region importance index is constructed and semantic meaningful region (SMR) is introduced. Moreover, ARM automatically performs SMR-to-image matching or image-to-image matching. Extensive experiments on Corel-1000, Caltech-256 and University of Washington (UW) databases demonstrate the authors proposed ARM is more flexible and more efficient than the existing visual similarity measurements that were originally developed for RBIR.


    1. 1)
      • 1. Carson, C., Belongie, S., Greenspan, H., Malik, J.: ‘Blobworld: image segmentation using expectation-maximization and its application to image querying’, IEEE Trans. Pattern Anal. Mach. Intell., 2002, 24, (8), pp. 10261038 (doi: 10.1109/TPAMI.2002.1023800).
    2. 2)
      • 2. Ma, W.Y., Manjunath, B.S.: ‘NETRA: a toolbox for navigating large image databases’. Proc. IEEE Int. Conf. Image Processing, Santa Barbara California, 1997, pp. 568571.
    3. 3)
      • 3. Wang, J.Z., Li, J., Wiederhold, G.: ‘SIMPLIcity: semantics-sensitive integrated matching for picture libraries’, IEEE Trans. Pattern Anal. Mach. Intell., 2001, 23, (9), pp. 947963 (doi: 10.1109/34.955109).
    4. 4)
      • 4. Rubio, J.C., Serrat, J., Lopez, A., Paragios, N.: ‘Unsupervised co-segmentation through region matching’. IEEE Conf. Computer Vision and Pattern Recognition, 2012, pp. 749756.
    5. 5)
      • 5. Rubner, Y., Tomasi, C., Guibas, L.J.: ‘A metric for distributions with applications to image databases’. Proc. IEEE Int. Conf. Computer Vision, 1998, pp. 5966.
    6. 6)
      • 6. Shokoufandeh, A., Keselman, Y., Demirci, M.F., Macrini, D.: ‘Many-to-many feature matching in object recognition: a review of three approaches’, IET Comput. Vis., 2012, 6, (6), pp. 500513 (doi: 10.1049/iet-cvi.2012.0030).
    7. 7)
      • 7. Li, J., Wang, J.Z., Wiederhold, G.: ‘IRM: integrated region matching for image retrieval’. Proc. Eighth ACM Int. Conf. Multimedia, Los Angeles, USA, 2000, pp. 147156.
    8. 8)
      • 8. Hong, C., Zicheng, L., Jie, Y.: ‘Sparsity induced similarity measure for label propagation’. IEEE Int. Conf. Computer Vision, 2009, pp. 317324.
    9. 9)
      • 9. Feng, S., Xu, D., Yang, X.: ‘Attention-driven salient edge(s) and region(s) extraction with application to CBIR’, Signal Process., 2010, 90, (1), pp. 115 (doi: 10.1016/j.sigpro.2009.05.017).
    10. 10)
      • 10. Fakheri, M., Sedghi, T., Shayestch, M.G., Amirani, M.C.: ‘Framework for image retrieval using machine learning and statistical similarity matching’, IET Image Process., 2013, 7, (1), pp. 111 (doi: 10.1049/iet-ipr.2012.0104).
    11. 11)
      • 11. Abuhaiba, I.S.I., Aalamah, R.A.A.: ‘Efficient global and region content based image retrieval’, Int. J. Image Graph. Signal Process., 2012, 5, pp. 3846 (doi: 10.5815/ijigsp.2012.05.05).
    12. 12)
      • 12. Ying, Y., Li, P.: ‘Distance metric learning with eigenvalue optimization’, J. Mach. Learn. Res., 2012, 13, pp. 126.
    13. 13)
      • 13. Liu, Y., Rong, J., Mummert, L., Sukthankar, R., Goode, A., Bin, Z., et al: ‘A boosting framework for visuality-preserving distance metric learning and its application to medical image retrieval’, IEEE Trans. Pattern Anal. Mach. Intell., 2010, 32, (1), pp. 3044 (doi: 10.1109/TPAMI.2008.273).
    14. 14)
      • 14. Wang, Q.Y., Yuen, P.C., Feng, G.C.: ‘Semi-supervised metric learning via topology preserving multiple semi-supervised assumptions’, Pattern Recognit., 2013, 46, (9), pp. 25762587 (doi: 10.1016/j.patcog.2013.02.015).
    15. 15)
      • 15. Pei, Y., Huang, F., Shi, F., Zha, H.: ‘Unsupervised image matching based on manifold alignment’, IEEE Trans. Pattern Anal. Mach. Intell., 2012, 34, (8), pp. 16581664 (doi: 10.1109/TPAMI.2011.229).
    16. 16)
      • 16. Tao, W.B., Jin, H., Zhang, Y.M.: ‘Color image segmentation based on mean shift and normalized cuts’, IEEE Trans. Syst. Man Cybern., B: Cybern., 2007, 37, (5), pp. 13821389 (doi: 10.1109/TSMCB.2007.902249).
    17. 17)
      • 17. Pirnog, I., Oprea, C., Paleologu, C., Vizireanu, D.N.: ‘Improved minkowsky metric for image region partition’. The Third Int. Multi-Conf. Computing in the Global Information Technology, 2008, pp. 8084.
    18. 18)
      • 18. Ning, J.F., Zhang, L., Zhang, D., Wu, C.K.: ‘Interactive image segmentation by maximal similarity based region merging’, Pattern Recogn., 2010, 43, (2), pp. 445456 (doi: 10.1016/j.patcog.2009.03.004).
    19. 19)
      • 19. Arbeláez, P., Maire, M., Fowlkes, C., Malik, J.: ‘Contour detection and hierarchical image segmentation’, IEEE Trans. Pattern Anal. Mach. Intell., 2011, 33, (5), pp. 898916 (doi: 10.1109/TPAMI.2010.161).
    20. 20)
      • 20. Haralick, R.M., Shanmugam, K., Dinstein, I.: ‘Textual features for image classification’, IEEE Trans. Syst. Man Cybern., 1973, 3, (6), pp. 610621 (doi: 10.1109/TSMC.1973.4309314).
    21. 21)
      • 21. Hassaballah, M., Kanazawa, T., Ido, S.: ‘Efficient eye detection method based on grey intensity variance and independent components analysis’, IET Comput. Vis., 2010, 4, (4), pp. 261271 (doi: 10.1049/iet-cvi.2009.0097).
    22. 22)
      • 22. Hu, M.K.: ‘Visual pattern recognition by moment invariant’, IEEE Trans. Inf. Theory, 1962, 8, (2), pp. 179187 (doi: 10.1109/TIT.1962.1057692).
    23. 23)
      • 23. Farajzadeh, N., Faez, K., Pan, G.: ‘Study on the performance of moments as invariant descriptors for practical face recognition systems’, IET Comput. Vis., 2010, 4, (4), pp. 272285 (doi: 10.1049/iet-cvi.2009.0140).
    24. 24)
      • 24. Hsieh, C.H., Wang, C.H., Kuo, C.M.: ‘Color image retrieval using center/side region separation’. Proc. 16th IPPR Conf. Computer Vision, Graphics, and Image Processing, 2003, pp. 613620.
    25. 25)
      • 25. Yang, X., Wang, Z., Li, D., Zhang, J.: ‘Color image retrieval with adaptive feature weight in brushlet domain’. IEEE Second Symp. Web Society, 2010, pp. 97102.
    26. 26)
      • 26. Griffin, G., Holub, A., Perona, P.: ‘Caltech-256 object category dataset’. CalTech Report, 2007, pp. 120.
    27. 27)
      • 27. Deselaers, T., Keysers, D., Ney, H.: ‘Features for image retrieval: an experimental comparison’, Inf. Retr., 2008, 11, (2), pp. 77107 (doi: 10.1007/s10791-007-9039-3).

Related content

This is a required field
Please enter a valid email address