Soft computing applied to the build of textile defects inspection system

Soft computing applied to the build of textile defects inspection system

For access to this article, please select a purchase option:

Buy article PDF
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Your details
Why are you recommending this title?
Select reason:
IET Computer Vision — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

The inspection of textile defects is challenging because of the large number of defects categories that are characterised by their imprecision and uncertainty. In this study, novel interval type-2 fuzzy system is proposed for resolving defects recognition problem of textile industries. The proposed system mixes interval type-2 fuzzy reasoning and swarm optimisation algorithm together in order to enhance the defects classification capabilities. Interval type-2 fuzzy logic is powerful in handling high level of indecisions in the human decision making process, including uncertainties in measurements of textile features and data used to calibrate the examination's parameters. Swarm intelligence algorithm is used to optimise parameters of the membership functions to increase the accuracy of fuzzy controller. Besides, the problem of fuzzy linguistic rules learning has been tackled by utilising ant colony meta-heuristic method to reduce the complexity of the inspection system. Excellent recogniser results on real textile samples, using this system, are demonstrated.


    1. 1)
      • 1. Bhope, S.F., Patil, S.P.: ‘Defects identification in textile industries’, Int. J. Chem. Sci. Appl., 2010, 1, (1), pp. 3741.
    2. 2)
      • 2. Sivabalan, K.N., Gnanadurai, D.: ‘Efficient defect detection algorithm for gray level digital images using Gabor wavelet filter and Gaussian filter’, Int. J. Eng. Sci. Technol. (IJEST), 2011, 3, (4), pp. 31953202.
    3. 3)
      • 3. Wei, L., Xu, H.D.: ‘Statistic learning-based defect detection for twill fabrics’, Int. J. Autom. Comput., 2010, 7, (1), pp. 8694 (doi: 10.1007/s11633-010-0086-7).
    4. 4)
      • 4. Islam, A., Akhter, S., Mursalin, T.E.: ‘Automated textile defect recognition system using computer vision and artificial neural networks’. Proc. World Academy of Science, Engineering and Technology, 2006, vol. 13, pp. 17.
    5. 5)
      • 5. Mursalin, T.E., Eishita, F.Z., Islam, A.R.: ‘Fabric defect inspection system using neural network and microcontroller’, J. Theor. Appl. Inf. Technol., 2008, 4, (7), pp. 560570.
    6. 6)
      • 6. Pang, G., Kumar, A.: ‘Wavelet-based detection of local textile defects’. Eighth IEEE Conf. Mechatronics and Machine Vision in Practice, Hong Kong, 2001, pp. 42843.
    7. 7)
      • 7. Sabeeniaon, R.S., Parmasivam, M.E.: ‘Defect detection and identification in textile fabrics using multiresolution combined statistical and spatial frequency method’. IEEE Int. Conf. Advance Computing, India, 19–20 February 2010, pp. 162166.
    8. 8)
      • 8. Yang, X., Gao, J., Yung, N.: ‘Textile defect classification using discriminative wavelet frames’. Proc. 2005 IEEE Int. Conf. Information Acquisition, China, June 27–July 3 2005, pp. 5458.
    9. 9)
      • 9. Xie, X.: ‘A review of recent advances in surface defect detection using texture analysis techniques’, Electron. Lett. Comput. Vis. Image Anal., 2008, 7, (3), pp. 122.
    10. 10)
      • 10. Mahajan, P.M., Kolhe, S.R., Patil, P.M.: ‘A review of automatic fabric defect detection techniques’, Adv. Comput. Res., 2009, 1, (2), pp. 1829.
    11. 11)
      • 11. Kumar, A.: ‘Computer vision-based fabric defect detection: a survey’, IEEE Trans. Ind. Electron., 2008, 55, (1), pp. 348363 (doi: 10.1109/TIE.1930.896476).
    12. 12)
      • 12. Liu, Z., Wang, X.: ‘Image defect recognition based on super fuzzy characteristic’, J. Multimed., 2010, 5, (2), pp. 181188.
    13. 13)
      • 13. Linda, O., Manic, M.: ‘Evaluating uncertainty resiliency of type-2 fuzzy logic controllers for parallel delta robot’. Fourth Int. Conf. Human System Interaction (HSI 2011), Japan, 19–21 May 2011, pp. 9197.
    14. 14)
      • 14. Hameed, I.A., Sorensen, C.G., Green, O.: ‘Building an intelligent controller using simple genetic type-2 fuzzy logic system’. ‘Fuzzy controllers, theory and applications’, ed. Grigorie, L.ISBN: 978-953-307-543-3 (In Tech, February, 2011) pp. 148162.
    15. 15)
      • 15. Lee, C.-H., Hu, T.-W., Lee, C.-Ta., Lee, Y.-C.: ‘A recurrent interval type-2 fuzzy neural network with asymmetric membership functions for nonlinear system identification’. IEEE Int. Conf. Fuzzy Systems, Hong Kong, 1–6 June 2008, pp. 14961502.
    16. 16)
      • 16. Cao, J., Li, P., Liu, H.: ‘An interval fuzzy controller for vehicle active suspension systems’, IEEE Trans. Intell. Transp. Syst., 2010, 11, (4), pp. 885895 (doi: 10.1109/TITS.2010.2053358).
    17. 17)
      • 17. Martinez, R., Aguilar, L.T., Rodriguez, A.: ‘Optimization of type-2 fuzzy logic controllers using PSO applied to linear plants’, Soft Comput. Intell. Control Mob. Robot., 2011, SCI 318, pp. 181193.
    18. 18)
      • 18. Marroquin, R., Castillo, O., Soria, J.: ‘Particle swarm optimization applied to the design of type-1 and type-2 fuzzy controllers for an autonomous mobile robot’, Stud. Comput. Intell., 2009, 256, pp. 247262 (doi: 10.1007/978-3-642-04516-5_15).
    19. 19)
      • 19. Oh, S.-K., Jang, H.-J., Pedrycz, W.: ‘A comparative experimental study of type-1/type-2 fuzzy cascade controller based on genetic algorithms and particle swarm optimization’, Expert Syst. Appl., 2011, 38, pp. 1121711229 (doi: 10.1016/j.eswa.2011.02.169).
    20. 20)
      • 20. Tan, W.–W., Wu, D.: ‘Design of type-reduction strategies for type-2 fuzzy logic systems using genetic algorithms’, Stud. Comput. Intell., SCI, 2007, 66, pp. 169187 (doi: 10.1007/978-3-540-72377-6_7).
    21. 21)
      • 21. Lu, X.: ‘A spatial adaptive filter for smoothing of non-Gaussian texture noise’. IEEE Int. Conf. Acoustics, Speech and Signal Processing (ICASSP'2009)19–24 April, China, 2009, pp. 841844.
    22. 22)
      • 22. Al-amri, S., Kalyankar, N., Khamitkar, S.: ‘Image segmentation by using threshold techniques’, J. Comput., 2010, 2, (5), pp. 8386.
    23. 23)
      • 23. Kulkarni, A., Patil, S.: ‘Automated garment identification and defect detection models based on texture features and PNN’, Int. J. Latest Trends Eng. Technol., 2012, 1, (2), pp. 3743.
    24. 24)
      • 24. Casillas, J., Cordon, O., Herrera, F.: ‘Learning fuzzy rules using ant colony optimization algorithms’. Proc. Second Int. Workshop on Ant Algorithms, Belgium, 8–9 September, 2000, pp. 1321.
    25. 25)
      • 25. Carmona, P., Castro, J.L.: ‘Interpretability enhancement of fuzzy modeling using ant colony optimization’. Proc. First Int. Workshop on Genetic Fuzzy System (GFS'05), Spain, 2005, pp. 148153.
    26. 26)
      • 26. Al-Jaafreh, M., Al-Jumaily, A.: ‘Training type-2 fuzzy system by particle swarm optimization’. IEEE Int. Conf. Evolutionary Computation, Singapore, 25–28 September, 2007, pp. 34423446.
    27. 27)
      • 27. Graniteville company: ‘Manual of Standard Fabric Defects in the textile Industry’ (Graniteville Company, South Carolina, 1975).
    28. 28)
      • 28. Hao, Z., Huang, H., Zhang, X., Tu, K.: ‘A time complexity analysis of ACO for linear functions’. Lect. Notes Comput. Sci., 2006, 4247, pp. 513520 (doi: 10.1007/11903697_65).

Related content

This is a required field
Please enter a valid email address