Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

Saliency in images and video: a brief survey

Saliency in images and video: a brief survey

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Computer Vision — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Salient image regions permit non-uniform allocation of computational resources. The selection of a commensurate set of salient regions is often a step taken in the initial stages of many computer vision algorithms, thereby facilitating object recognition, visual search and image matching. In this study, the authors survey the role and advancement of saliency algorithms over the past decade. The authors first offer a concise introduction to saliency. Next, the authors present a summary of saliency literature cast into their respective categories then further differentiated by their domains, computational methods, features, context and use of scale. The authors then discuss the achievements and limitations of the current state of the art. This information is augmented by an outline of the datasets and performance measures utilised as well as the computational techniques pervasive in the literature.

References

    1. 1)
      • Heitger, F., von der Heydt, R., Kubler, O.: `A computational model of neural contour processing: figure-ground segregation and illusory contours', From Perception to Action Conf., 1994, September 1994, p. 181–192.
    2. 2)
      • Li, Y., Zhou, Y., Xu, L., Yang, X., Yang, J.: `Incremental sparse saliency detection', IEEE Int. Conf. on Image Processing (ICIP), 7–10 November 2009, p. 3093–3096.
    3. 3)
    4. 4)
      • The PASCAL Visual Object Classes Homepage. http://pascallin.ecs.soton.ac.uk/challenges/VOC/.
    5. 5)
      • Rapantzikos, K., Avrithis, Y., Kollias, S.: `Dense saliency-based spatiotemporal feature points for action recognition', IEEE Conf. on Computer Vision and Pattern Recognition, June 2009, p. 1454–1461.
    6. 6)
      • Escalera, S., Radeva, P., Pujol, O.: `Complex salient regions for computer vision problems', IEEE Conf. on Computer Vision and Pattern Recognition, 17–22 June 2007, p. 1–8.
    7. 7)
      • Duncan, K.: `Relational entropy-based measure of saliency', 2010, Master's, University of South Florida.
    8. 8)
      • Gao, D., Vasconcelos, N.: `Integrated learning of saliency, complex features, and object detectors from cluttered scenes', IEEE Computer Society Conf. on Computer Vision and Pattern Recognition, 2005, 2, p. 282–287, (20–25).
    9. 9)
    10. 10)
      • Liu, T., Sun, J., Zheng, N.n., Tang, X., Shum, H.y.: `Learning to detect a salient object', IEEE Conf. on Computer and Vision Pattern Recognition, 2007, p. 1–8.
    11. 11)
      • Michael Bileschi, S.: `StreetScenes: towards scene understanding in still images', 2006, PhD, Massachusetts Institute of Technology.
    12. 12)
      • Everingham, M., Van Gool, L., Williams, C.K.I., Winn, J., Zisserman, A.: The PAS- CAL Visual Object Classes Challenge 2009 (VOC2009). http://www.pascal-network.org/challenges/VOC/voc2009/workshop/index.html.
    13. 13)
    14. 14)
    15. 15)
    16. 16)
    17. 17)
    18. 18)
    19. 19)
    20. 20)
      • Li, F.-F., Andreeto, M., Ranzato, M.A.: Caltech 101. http://www.vision.caltech.edu/Image_Datasets/Caltech101.
    21. 21)
      • Guo, C., Ma, Q., Zhang, L.: `Spatio-temporal saliency detection using phase spectrum of quaternion fourier transform', IEEE Conf. on Computer Vision and Pattern Recognition, June 2008, p. 1–8.
    22. 22)
    23. 23)
    24. 24)
      • Griffin, G., Holub, A., Perona, P.: `Caltech-256 object category dataset', Technical report 7694, 2007.
    25. 25)
    26. 26)
    27. 27)
      • University of Washington Ground Truth Database. http://www.cs.washington.edu/research/imagedatabase/groundtruth/.
    28. 28)
      • Laptev, I., Marsza lek, M., Schmid, C., Rozenfeld, B.: `Learning realistic human actions from movies', IEEE Conf. on Computer Vision and Pattern Recognition, 2008.
    29. 29)
      • Pierrard, J.-S., Vetter, T.: `Skin detail analysis for face recognition', IEEE Conf. on Computer Vision and Pattern Recognition, 17–22 June 2007, p. 1–8.
    30. 30)
    31. 31)
      • Fei-Fei, L., Fergus, R., Perona, P.: `Learning generative visual models from few training examples: an incremental bayesian approach tested on 101 object categories', IEEE Conf. on Computer Vision and Pattern Recognition, 2004.
    32. 32)
    33. 33)
      • Peters, R.J., Itti, L.: `Beyond bottom-up: incorporating task-dependent influences into a computational model of spatial attention', IEEE Conf. on Computer Vision and Pattern Recognition, 2007, p. 1–8.
    34. 34)
    35. 35)
      • Carson, C., Belongie, S., Greenspan, H., Malik, J.: `Region-based image querying', IEEE Workshop on content-based access of image and video libraries, 1997, 20, p. 42–49.
    36. 36)
      • Recognition of Human Actions. http://www.nada.kth.se/cvap/actions/.
    37. 37)
      • N. Ouerhani , R. von Hartburg , H. Hugli , R. Muri . Empirical validation of the saliency-based model of visual attention. Electron. Lett. Comput. Vis. Image Anal. , 13 - 24
    38. 38)
      • Gao, D., Vasconcelos, N.: `Discriminant saliency for visual recognition from cluttered scenes', Neural Information Processing Systems, June 2009, p. 481–488.
    39. 39)
      • J. Harel , C. Koch , P. Perona . Graph-based visual saliency. Adv. Neural Inf. Process. Syst. , 545 - 552
    40. 40)
      • M. Everingham , A. Zisserman , C.K.I. Williams , L. Van Gool . The PASCAL Visual Object Classes Challenge 2006 (VOC2006) Results.
    41. 41)
      • J. Sun . Microsoft Research Asia Salient Object Database.
    42. 42)
      • Hare, J.S., Lewis, P.H.: `Scale saliency: applications in visual matching, tracking and view-based object recognition', Distributed Multimedia Systems 2003 Visual Information Systems 2003, 2003, p. 436–440.
    43. 43)
    44. 44)
      • Stottinger, J., Hanbury, A., Gevers, T., Sebe, N.: `Lonely but attractive: sparse color salient points for object retrieval and categorization', IEEE Computer Society Conf. on Computer Vision and Pattern Recognition Workshops, June 2009, p. 1–8.
    45. 45)
    46. 46)
    47. 47)
      • Hou, X., Zhang, L.: `Saliency detection: a spectral residual approach', IEEE Conf. on Computer Vision and Pattern Recognition, 2007, p. 1–8.
    48. 48)
      • Liu, T., Zheng, N., Ding, W., Yuan, Z.: `Video attention: learning to detect a salient object sequence', Int. Conf. on Pattern Recognition, 8–11 December 2008, p. 1–4.
    49. 49)
    50. 50)
      • Nene, S.A., Nayar, S.K., Murase, H.: `Columbia object image library (COIL-20)', Technical report, 1996.
    51. 51)
    52. 52)
      • Gao, D., Vasconcelos, N.: `Bottom-up saliency is a discriminant process', IEEE 11th Int. Conf. on Computer Vision, October 2007, p. 1–6.
    53. 53)
    54. 54)
      • Itti, L., Baldi, P.: `A principled approach to detecting surprising events in video', IEEE Computer Society Conf. on Computer Vision and Pattern Recognition, June 2005, 1, p. 631–637.
    55. 55)
      • Zhang, Q., Xiao, H.: `Biologically motivated salient regions detection approach', Second Int. Symp. on Intelligent Information Technology Application, 20–22 December 2008, 2, p. 1100–1104.
    56. 56)
    57. 57)
      • Tobacco800 Complex Document Image Database and Groundtruth. http://www.umiacs.umd.edu/~zhugy/Tobacco800.html.
    58. 58)
      • N. Bruce , J. Tsotsos . Saliency based on information maximization. Adv. Neural Inf. Process. Syst. , 155 - 162
    59. 59)
      • Cai, J.-Z., Zhang, M.-X., Chang, J.-Y.: `A novel salient region extraction based on color and texture features', Int. Conf. on Wavelet Analysis and Pattern Recognition, 8–15 2009, p. 12–15.
    60. 60)
    61. 61)
    62. 62)
    63. 63)
      • Judd, T., Ehinger, K., Durand, F., Torralba, A.: `Learning to predict where humans look', Int. Conf. on Computer Vision, September 2009, p. 2106–2113.
    64. 64)
      • Fu, Y., Cheng, J., Li, Z., Lu, H.: `Saliency cuts: an automatic approach to object segmentation', Int. Conf. on Pattern Recognition, December 2008, p. 1–4.
    65. 65)
    66. 66)
      • Seo, H.-J., Milanfar, P.: `Visual saliency for automatic target detection, boundary detection, and image quality assessment', IEEE Int. Conf. on Acoustics Speech and Signal Processing, 14–19 March 2010, p. 5578–5581.
    67. 67)
      • Sha'ashua, A., Ullman, S.: `Structural saliency: the detection of globally salient structures using a locally connected network', Int. Conf. on Computer Vision, December 1988, p. 321–327.
    68. 68)
    69. 69)
      • Chen, H.-Y., Leou, J.-J.: `A new visual attention model using texture and object features', IEEE Eighth Int. Conf. on Computer and Information Technology Workshops, 8–11 July 2008, p. 374–378.
    70. 70)
    71. 71)
      • Zhu, G., Zheng, Y., Doermann, D., Jaeger, S.: `Multi-scale structural saliency for signature detection', IEEE Conf. on Computer Vision and Pattern Recognition, 17–22 June 2007, p. 1–8.
    72. 72)
      • Hollywood Human Actions Dataset. http://www.irisa.fr/vista/Equipe/People/Laptev/download.html.
    73. 73)
    74. 74)
    75. 75)
      • Martin, D., Fowlkes, C., Tal, D., Malik, J.: `A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics', Int. Conf. Computer Vision, 2001, p. 416–423.
    76. 76)
    77. 77)
      • Navalpakkam, V., Itti, L.: `An integrated model of top-down and bottom-up attention for optimizing detection speed', IEEE Computer Society Conf. on Computer Vision and Pattern Recognition, 2006, p. 2049–2056.
    78. 78)
      • Lewis, D., Agam, G., Argamon, S., Frieder, O., Grossman, D., Heard, J.: `Building a test collection for complex document information processing', 29thAnnual Int. ACM SIGIR Conf., 2006, p. 665–666.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cvi.2012.0032
Loading

Related content

content/journals/10.1049/iet-cvi.2012.0032
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address