Efficient algorithms for detection of face, eye and eye state

Efficient algorithms for detection of face, eye and eye state

For access to this article, please select a purchase option:

Buy article PDF
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Your details
Why are you recommending this title?
Select reason:
IET Computer Vision — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Eye state analysis (open or closed) is an important step in fatigue detection. In this study, an efficient algorithm for eye state detection is proposed. At first, a new face detection method is presented for noisy images that finds the face area in the input image well. Then, novel algorithms for detection of eye region and eye state are introduced. The performance of the proposed method is evaluated on four different databases namely FERET, Aberdeen, IMM and CVL which contain more than 5700 images with different descents, positions, light conditions and glasses. The results show that the new method achieves more accuracy rate than the previously presented algorithms, while it does not need training data and is also computationally efficient.


    1. 1)
      • 1. Tabrizi, P.R., Zoroofi, R.A.: ‘Open/closed eye analysis for drowsiness detection’. Proc. First Workshop on Image Processing Theory, Tools, and Applications, 2008, pp. 17.
    2. 2)
      • 2. Xie, X., Sudhakar, R., Zhuang, H.: ‘On improving eye feature extraction using deformable templates’, Pattern Recognit., 1994, 27, (6), pp. 791799 (doi: 10.1016/0031-3203(94)90164-3).
    3. 3)
      • 3. Huang, W., Mariani, R.: ‘Face detection and precise eyes location’. Proc. Int. Conf. on Pattern Recognition, 2000, pp. 722727.
    4. 4)
      • 4. Zhou, Z., Geng, X.: ‘Projection functions for eye detection’, Pattern Recognit., 2004, 37, (5), pp. 10491056 (doi: 10.1016/j.patcog.2003.09.006).
    5. 5)
      • 5. Kawato, S., Tetsutani, N.: ‘Detection and tracking of eyes for gaze-camera control’. Proc. 15th Int. Conf. on Vision Interface, 2002, pp. 10311038.
    6. 6)
      • 6. Huang, J., Wechsler, H.: ‘Eye detection using optimal wavelet packets and radial basis functions (rbfs)’, Int. J. Pattern Recognit. Artif. Intell., 1999, 13, (7), pp. 1009.
    7. 7)
      • 7. Feng, G., Yuen, P.: ‘Multi cues eye detection on gray intensity image’, Pattern Recognit., 2001, 34, pp. 10331046 (doi: 10.1016/S0031-3203(00)00042-X).
    8. 8)
      • 8. Khairosfaizal, W., Nor'aini, A.: ‘Eyes detection in facial images using circular Hough transform’. Proc. Fifth Int. Colloquium on Signal Processing and Its Applications, 2009, pp. 238242.
    9. 9)
      • 9. Li, S., Chu, R., Ao, M., Zhang, L., He, R.: ‘Highly accurate and fast face recognition using near infrared images’. Proc. IAPR Int. Conf. on Biometric, 2006, pp. 151158.
    10. 10)
      • 10. Li, S., Zhang, L., Liao, S., et al: ‘A near-infrared image based face recognition system’. Proc. Seventh IEEE Int. Conf. on Automatic Face and Gesture Recognition, 2006, pp. 455460.
    11. 11)
      • 11. Sirohey, S., Rosenfeld, A., Duric, Z.: ‘A method of detecting and tracking irises and eyelids in video’, Pattern Recognit., 2001, 9, pp. 13891401.
    12. 12)
      • 12. Hsu, R., Abdel-Mottaleb, M., Jain, A.: ‘Face detection in color images’, IEEE Trans. Pattern Anal. Mach. Intell., 2002, 24, (5), pp. 696706 (doi: 10.1109/34.1000242).
    13. 13)
      • 13. Huan, N.V., Binh, N.T., Kim, H.: ‘Eye-verifier using ternary template for reliable eye detection in facial color images’. Proc. Third IEEE Int. Conf. on Biometrics: Theory, Applications, and Systems, 2009, pp. 16.
    14. 14)
      • 14. FERET database available at
    15. 15)
      • 15. Aberdeen database available at
    16. 16)
      • 16. IMM database available at ~ aam/.
    17. 17)
      • 17. Computer Vision laboratory, Faculty of Computer and Information Science, University of Ljubljana, Slovenia,
    18. 18)
      • 18. Liu, Y., Yu, H., He, Z., Ye, X.: ‘Fast robust face detection under a skin color model with geometry constraints’. Proc. Int. Conf. on Computational Intelligence and Security, 2009, pp. 515519.
    19. 19)
      • 19. Huang, D.Y., Hu, W.Ch., Hsu, M.H.: ‘Adaptive skin color model switching for face tracking under varying illumination’. Proc. Fourth Int. Conf. on Innovative Computing, Information and Control (ICICIC), 2009, pp. 326329.
    20. 20)
      • 20. Lang, L., Gu, W.: ‘The face detection algorithm combined skin color segmentation and PCA’. Proc. Int. Conf. on Information Engineering and Computer Science (ICIECS), 2009, pp. 13.
    21. 21)
      • 21. Yi, P.Z., Yu, Z., Ping, W.: ‘Multi-pose face detection based on adaptive skin color and structure model’. Proc. Int. Conf. on Computational Intelligence and Security (CIS), 2009, pp. 325329.
    22. 22)
      • 22. Naseem, I., Deriche, M.: ‘Robust human face detection in complex color images’. Proc. IEEE Int. Conf. on Image Processing (ICIP), 2005, vol. 2, pp. 338341.
    23. 23)
      • 23. Nallaperumal, K., Subban, R., Krishnaveni, K.: ‘Human face detection in color images using skin color and template matching models for multimedia on the web’. Proc. Int. Conf. on Wireless and Optical Communications Networks (IFIP), 2006, pp. 15.
    24. 24)
      • 24. Gonzalez, R.C., Woods, R.E.: ‘Digital image processing’ (Prentice Hall, 2008, 3rd edn.).
    25. 25)
      • 25. Cai, L., Qian, J.: ‘Night color image enhancement using fuzzy set’. Proc. Second Int. Congress on Image and Signal Processing, October 2009, pp. 14.
    26. 26)
      • 26. Viola, P., Jones, M.J.: ‘Robust real-time face detection’, Int. J. Comput. Vis., 2004, 57, pp. 137154 (doi: 10.1023/B:VISI.0000013087.49260.fb).
    27. 27)
      • 27. OpenCV 2.1 available at
    28. 28)
      • 28. Hassaballah, M., Kanazawa, T., Ido, S.: ‘Efficient eye detection method based on grey intensity variance and independent components analysis’, IET Comput. Vis., 2010, 4, pp. 261271 (doi: 10.1049/iet-cvi.2009.0097).
    29. 29)
      • 29. Wu, J., Trivedi, M.: ‘A binary tree for probability learning in eye detection’. Proc. IEEE Conf. on Computer Vision and Pattern Recognition, 2005, vol. 3, pp. 170178.
    30. 30)
      • 30. Guan, Y.: ‘Robust eye detection from facial image based on multi-cue facial information’. Proc. Int. Conf. on Control and Automation, 2007, pp. 17751778.
    31. 31)
      • 31. Martinez, M., Benavente, R.: ‘The AR face database’, CVC Technical report #24, 1998.
    32. 32)
      • 32. Zheng, Z., Yang, J., Yang, L.: ‘A robust method for eye features extraction on color image’, Pattern Recogn. Lett., 2005 vol. 26, pp. 22522261 (doi: 10.1016/j.patrec.2005.03.033).

Related content

This is a required field
Please enter a valid email address