http://iet.metastore.ingenta.com
1887

Distributed RANSAC for the robust estimation of three-dimensional reconstruction

Distributed RANSAC for the robust estimation of three-dimensional reconstruction

For access to this article, please select a purchase option:

Buy article PDF
$19.95
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Computer Vision — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Many low- or middle-level three-dimensional reconstruction algorithms involve a robust estimation and selection step whereby parameters of the best model are estimated and inliers fitting this model are selected. The RANSAC (RANdom SAmple consensus) algorithm is the most widely used robust algorithm for this task. A new version of RANSAC, called distributed RANSAC (D-RANSAC), is proposed, to save computation time and improve accuracy. The authors compare their results with those of classical RANSAC and randomised RANSAC (R-RANSAC). Experiments show that D-RANSAC is superior to RANSAC and R-RANSAC in computational complexity and accuracy in most cases, particularly when the inlier proportion is below 65%.

References

    1. 1)
    2. 2)
      • Torr, P., Murray, D.: `Outlier detection and motion segmentation', SPIE Sensor Fusion VI, September 1993, Boston, USA, p. 432–443.
    3. 3)
      • Schaffalitzky, F., Zisserman, A.: `Viewpoint invariant texture matching and wide baseline stereo', Proc. ICCV, 2001, Vancouver, BC, Canada, p. 636–643.
    4. 4)
      • Clarke, J., Carlsson, S., Zisserman, A.: `Detecting and tracking linear features efficiently', Proc. Seventh BMVC, 1996, p. 415–424.
    5. 5)
      • Cantzler, H., Fisher, R., Devy, M.: `Improving architectural 3D reconstruction by plane and edge constraining', Proc. BMVC, 2002, Cardiff, UK, p. 43–52.
    6. 6)
    7. 7)
      • Torr, P., Zisserman, A.: `Robust computation and parameterization of multiple view relations', Proc. ICCV, 1998, Bombay, India, p. 727–732.
    8. 8)
    9. 9)
    10. 10)
    11. 11)
      • Chum, O., Matas, J.: `Randomized RANSAC with td,d test', Proc. BMVC, 2002, Cardiff, UK, p. 448–457.
    12. 12)
      • Matas, J., Chum, O.: `Randomized RANSAC with sequential probability ratio test', Proc. ICCV, 2005, Beijing, China, p. 1727–1732.
    13. 13)
    14. 14)
    15. 15)
    16. 16)
      • R. Hartley . (2003) Multiple view geometry in computer vision.
    17. 17)
      • Chum, O., Werner, T., Matas, J.: `Two-view geometry estimation unaffected by a dominant plane', Proc. CVPR’05, 2005, p. 772–779.
    18. 18)
      • Frahm, J.M., Pollefeys, M.: `RANSAC for quasi-degenerate data (QDEGSAC)', Proc. CVPR’06, 2006, p. 453–460.
    19. 19)
      • Xu, M., Petrou, M.: `Distributed ransac for 3D reconstruction', Proc. 20th Annual IST/SPIE Symp. Electronic Imaging, 2008, p. 6805w.
    20. 20)
    21. 21)
      • Chum, O., Matas, J., Kittler, J.: `Locally optimized RANSAC', Proc. 25th DAGM Symp., 2003, Magdeburg, Germany, p. 236–243.
    22. 22)
      • IST06: ‘E-training for interpreting images of man-made scenes’. Available at http://www.ipb.uni-bonn.de/projects/etrims/.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cvi.2010.0223
Loading

Related content

content/journals/10.1049/iet-cvi.2010.0223
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address