http://iet.metastore.ingenta.com
1887

Unobtrusive multi-modal biometric recognition using activity-related signatures

Unobtrusive multi-modal biometric recognition using activity-related signatures

For access to this article, please select a purchase option:

Buy article PDF
$19.95
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Computer Vision — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

The present study proposes a novel multimodal biometrics framework for identity recognition and verification following the concept of the so called ‘on-the-move’ biometry, which sets as the final objective the non-stop authentication in an unobtrusive manner. Gait, that forms the major modality of the scheme, is complemented by new dynamic biometric signatures extracted from several activities performed by the user. Gait recognition is performed through a robust scheme that is based on geometric descriptors of gait energy images and is able to compensate for undesired gait behaviour like walking direction variations and stops. On the other hand, the biometric signatures, based on the user activities, are extracted by tracking of three points of interest and are seen to provide a powerful auxiliary biometric trait. Finally, score level fusion is performed and the experimental results illustrate that the proposed multimodal biometric scheme provides very promising results in realistic application scenarios.

References

    1. 1)
      • Xiao, Q.: `Security issues in biometric authentication', Information Assurance Workshop, IAW 2005, 2005, p. 8–13.
    2. 2)
    3. 3)
    4. 4)
      • D. Maltoni , D. Maio , A.K. Jain , S. Prabhakar . (2003) Handbook of fingerprint recognition.
    5. 5)
      • S. Chowhan , G.N. Shinde . Iris biometrics recognition application in security management. Congr. Image Signal Process. (CISP) , 661 - 665
    6. 6)
    7. 7)
      • Delac, K., Grgic, M.: `A survey of biometric recognition methods', Proc. Elmar 2004, 46th Int. Symp. Electronics in Marine, 2004, p. 184–193.
    8. 8)
      • Liu, X., Chen, T.: `Video-based face recognition using adaptive hidden markov models', IEEE Proc. Computer Society Conf. Computer Vision and Pattern Recognition (CVPR), 2003, p. 340–345, vol. 1.
    9. 9)
    10. 10)
    11. 11)
      • Veeraraghavan, A., Chowdhury, A.R., Chellappa, R.: `Role of shape and kinematics in human movement analysis', IEEE Conf. Computer Vision and Pattern Recognition (CVPR'04), p. 730–737, vol. 1.
    12. 12)
      • Wagg, D.K., Nixon, M.S.: `On automated model-based extraction and analysis of gait', Proc. IEEE. Int. Conf. Automatic Face and Gesture Recognition, 2004, p. 11–16.
    13. 13)
    14. 14)
    15. 15)
    16. 16)
    17. 17)
      • Boulgouris, N., Plataniotis, K., Hatzinakos, D.: `Gait recognition using dynamic time warping', IEEE Sixth Workshop on Multimedia Signal Processing, 2004, Siena, p. 263–266.
    18. 18)
    19. 19)
    20. 20)
      • Goffredo, M., Carter, J.N., Nixon, M.: `Front-view gait recognition', IEEE Second Int. Conf. Biometrics: Theory, Applications and Systems (BTAS'08), 2008.
    21. 21)
      • Goffredo, M., Seely, R.D., Carter, J.N., Nixon, M.S.: `Markerless view independent gait analysis with self-camera calibration', IEEE Int. Conf. Automatic Face and Gesture Recognition, 2008.
    22. 22)
      • Kale, A., Chowdhury, A., Chellappa, R.: `Towards a view invariant gait recognition algorithm', Proc. IEEE Conf. Advanced Video and Signal Based Surveillance, 2003, p. 143–150.
    23. 23)
    24. 24)
      • Spencer, N., Carter, J.: `Towards pose invariant gait reconstruction', Proc. IEEE Int. Conf. Image Processing, ICIP 2005, 2005, p. 261–264.
    25. 25)
      • Kale, A., Cuntoor, N., Chellappa, R.: `A framework for activity-specific human identification', IEEE Proc. Int. Conf. Acoustics, Speech, and Signal Processing (ICASSP), 2002, p. 3660–3663, vol. 4.
    26. 26)
      • Drosou, A., Moustakas, K., Ioannidis, D., Tzovaras, D.: `On the potential of activity-related recognition', Int. Joint Conf. Computer Vision, Imaging and Computer Graphics Theory and Applications (VISAPP 2010), 2010.
    27. 27)
      • A. Drosou , K. Moustakas , D. Ioannidis , D. Tzovaras , A. Broemme , C. Busch . (2010) Activity related biometrics based on motion trajectories, BIOSIG 2010: biometrics and electronic signatures.
    28. 28)
      • Drosou, A., Moustakas, K., Tzovaras, D.: `Event-based unobtrusive authentication using multi-view image sequences', Proc. ACM Multimedia/Artemis Workshop ARTEMIS'10, 2010, Florence, p. 69–74.
    29. 29)
      • M. Fairhurst , F. Deravi , N. Mavity , J. George , K. Sirlantzis . (2003) Intelligent management of multimodal biometric transactions.
    30. 30)
    31. 31)
      • Seely, R., Samangooei, S., Lee, M., Carter, J., Nixon, M.: `The University of Southampton multi-biometric tunnel and introducing a novel 3D gait dataset', Second IEEE Int. Conf Biometrics: Theory, Applications and Systems (BTAS), 2008, p. 1–6.
    32. 32)
      • G. Potamianos , C. Neti , J. Luettin , I. Matthews . (2004) Audio-visual automatic speech recognition: an overview.
    33. 33)
      • Landais, R., Bredin, H., Zouari, L., Chollet, G.: `Vérification audiovisuelle de l'identité', Proc. Traitement et Analyse de l'Information: Méthodes et Applications (TAIMA), 2007, Hammamet, Tunisia.
    34. 34)
      • Jain, A.K., Nandakumar, K., Lu, X., Park, U.: `Integrating faces, fingerprints, and soft biometric traits for user recognition', Proc. Biometric Authentication Workshop, 2004, p. 259–269.
    35. 35)
    36. 36)
      • Jain, A.K., Dass, S.C., Nandakumar, K.: `Soft biometric traits for personal recognition systems', Proc. Int. Conf. Biometric Authentication (ICBA), 2004, p. 731–738.
    37. 37)
    38. 38)
    39. 39)
    40. 40)
    41. 41)
    42. 42)
    43. 43)
      • Han, X., Liu, J., Li, L., Wang, Z.: `Gait recognition considering directions of walking', Proc. IEEE Conf. Cybernetics and Intelligent Systems, 2006, p. 1–5.
    44. 44)
    45. 45)
      • R. Koekoek , R.F. Swarttouw . (1998) The Askey-scheme of hypergeometric orthogonal polynomials and its q-analogue.
    46. 46)
      • Gomez, G., Morales, E.F.: `Automatic feature construction and a simple rule induction algorithm for skin detection', Proc. ICML Workshop on Machine Learning in Computer Vision (MLCV), 2002, p. 31–38.
    47. 47)
      • Viola, P., Jones, M.: `Rapid object detection using a boosted cascade of simple', IEEE Proc. Computer Society Conf. Computer Vision and Pattern Recognition (CVPR), 2001, p. 511–518, vol. 1.
    48. 48)
      • Ramesh, D.C.V., Meer, P.: `Real-time tracking of non-rigid objects using mean shift', IEEE Proc. Computer Vision and Pattern Recognition 2007 (CVPR), 2000, p. 142–149, vol. 2.
    49. 49)
    50. 50)
    51. 51)
    52. 52)
      • A. Niknejad .
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cvi.2010.0166
Loading

Related content

content/journals/10.1049/iet-cvi.2010.0166
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address