© The Institution of Engineering and Technology
The exhaustive quality control is becoming very important in the world́s globalised market. One example where quality control becomes critical is the percussion cap mass production, an element assembled in firearm ammunition. These elements must achieve a minimum tolerance deviation in their fabrication. This study outlines a machine vision system development using a three-dimensional camera for the inspection of the whole production of percussion caps. This system presents multiple problems, such as metallic reflections in the percussion caps, high-speed movement for scanning the pieces, and mechanical errors and irregularities in percussion cap placement. Owing to these problems, it is impossible to solve the problem using traditional image processing methods, and hence, machine-learning algorithms have been tested to provide a feasible classification of the possible errors present in the percussion caps.
References
-
-
1)
-
E.N. Malamas ,
E. Petrakis ,
M. Zervakis ,
L. Petit ,
J.D. Legat
.
A survey on industrial vision systems, applications and tools.
Image Vis. Comput.
,
2 ,
171 -
188
-
2)
-
H.I. Shafeek ,
E.S. Gadelmawla ,
A.A. Abdel-Shafy ,
I.M. Elewa
.
Automatic inspection of gas pipeline welding defects using an expert vision system.
NDT&E Int.
,
4 ,
301 -
307
-
3)
-
D.M. Tsai
.
A machine vision approach for detecting and inspecting circular parts.
Int. J. Adv. Manuf. Technol..
,
217 -
221
-
4)
-
J. Leopold ,
H. Gunther ,
R. Leopold
.
New developments in fast 3D-surface quality control.
Measurement
,
2 ,
179 -
187
-
5)
-
Q. Li ,
X. Yao ,
B. Xu
.
A real-time 3D scanning system for pavement distortion inspection.
Meas. Sci. Technol.
,
1
-
6)
-
F. Bosche
.
Automated recognition of 3D CAD model objects in laser scans and calculation of as-built dimensions for dimensional compliance control in construction.
Elsevier J. Adv. Eng. Inform.
,
1 ,
107 -
118
-
7)
-
A. Picon ,
M.A. Bereciartua ,
J.A. Gutierrez ,
J. Perez
.
Machine vision in quality control. Development of 3D robotizad laser-scanner.
DYNA
,
9 ,
733 -
742
-
8)
-
E. Alpaydın
.
(2004)
Introduction to machine learning (adaptive computation and machine learning).
-
9)
-
C.M. Bishop
.
(2006)
Pattern recognition and machine learning.
-
10)
-
R.O. Duda ,
P.E. Hart ,
D.G. Stork
.
Pattern classification.
-
11)
-
T.H. Hou ,
M.D. Pern
.
A computer vision-based shape-classification system using image projection and a neural network.
Int. J. Adv. Manuf. Technol.
,
843 -
850
-
12)
-
L.I. Kuncheva
.
(2004)
Combining pattern classifiers: methods and algorithms.
-
13)
-
J. Kittler
.
On combining classifiers.
IEEE Trans. Pattern Anal. Mach. Intell.
,
3 ,
226 -
239
-
14)
-
Boehnke, K.E.: `Hierarchical object localization for robotic bin picking', 2008, PhD, Faculty of Electronics and Telecommunications. Politehnica University of Timisoara, Romania.
-
15)
-
R.C. Gonzales ,
R.E. Woods
.
(1993)
Digital image processing.
-
16)
-
Tellaeche, A.: `Técnicas inteligentes basadas en percepción visual aplicadas a la agricultura de precisión', 2008, PhD, Universidad Nacional de Educación a Distancia, Madrid, España.
-
17)
-
Ibarguren, A.: `Arquitectura de dos capas para el reconocimiento del lenguaje de signos: Gestos y Movimiento', 2008, PhD, Universidad del Pais Vasco, San Sebastián, España.
-
18)
-
N.R. Draper
.
(1966)
Applied regression analysis.
-
19)
-
A. Tellaeche ,
X.P. Burgos-Artizzu ,
G. Pajares ,
A. Ribeiro
.
A vision-based method for weeds identification through the Bayesian decision theory.
Pattern Recognit.
,
2 ,
521 -
530
-
20)
-
G. Pajares ,
J.M. De la Cruz
.
(2007)
Visión por computador: imágenes digitales y aplicaciones.
-
21)
-
P. Domingos ,
M. Pazzani
.
On the optimality of the simple Bayesian classifier under zero-one loss.
Mach. Learn.
,
103 -
137
-
22)
-
Rish, I.: `An empirical study of the Naïve Bayes classifier', In IJCAI 2001 Workshop on Empirical Methods in Artificial Intelligence, 2001.
-
23)
-
M. Minsky
.
Steps toward artificial intelligence.
Proc. IRE
,
1 ,
8 -
30
-
24)
-
O. Pourret ,
P. Naim ,
B. Marcot
.
(2008)
Bayesian networks: a practical guide to applications.
-
25)
-
Pearl, J.: `Bayesian networks: a model of self-activated memory for evidential reasoning', Proc. Seventh Conf. Cognitive Science Society, University of California, 1985, Irvine, CA, USA, p. 329–334.
-
26)
-
Friedman, N., Goldszmidt, M.: `Building classifiers using Bayesian networks', AAAI/IAAI, 1996, Portland, Oregon, 2, p. 1277–1284.
-
27)
-
E. Castillo ,
J.M. Gutiérrez ,
A.S. Hadi
.
(1997)
Learning bayesian networks in expert systems and probabilistic network models.
-
28)
-
F.V. Jensen ,
T.D. Nielsen
.
(2007)
Bayesian networks and decision graphs.
-
29)
-
J. Pearl
.
(1988)
Probabilistic reasoning in intelligent systems: networks of plausible inference.
-
30)
-
B.V. Dasarathy
.
(1991)
Nearest neighbor (NN) norms: NN pattern classification techniques.
-
31)
-
G. Shakhnarovich ,
T. Darrel ,
P. Indyk
.
(2005)
Nearest-neighbor methods in learning and vision.
-
32)
-
T.M. Cover ,
P.E. Hart
.
Nearest neighbor pattern classification.
IEEE Trans. Inf. Theory
,
1 ,
21 -
27
-
33)
-
J.R. Quinlan
.
Induction of decision trees.
Mach. Learn.
,
1 ,
81 -
106
-
34)
-
J.R. Quinlan
.
(1993)
C4.5: programs for machine learning.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cvi.2010.0019
Related content
content/journals/10.1049/iet-cvi.2010.0019
pub_keyword,iet_inspecKeyword,pub_concept
6
6