http://iet.metastore.ingenta.com
1887

Three-dimensional machine vision and machine-learning algorithms applied to quality control of percussion caps

Three-dimensional machine vision and machine-learning algorithms applied to quality control of percussion caps

For access to this article, please select a purchase option:

Buy article PDF
$19.95
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Computer Vision — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

The exhaustive quality control is becoming very important in the world́s globalised market. One example where quality control becomes critical is the percussion cap mass production, an element assembled in firearm ammunition. These elements must achieve a minimum tolerance deviation in their fabrication. This study outlines a machine vision system development using a three-dimensional camera for the inspection of the whole production of percussion caps. This system presents multiple problems, such as metallic reflections in the percussion caps, high-speed movement for scanning the pieces, and mechanical errors and irregularities in percussion cap placement. Owing to these problems, it is impossible to solve the problem using traditional image processing methods, and hence, machine-learning algorithms have been tested to provide a feasible classification of the possible errors present in the percussion caps.

References

    1. 1)
    2. 2)
    3. 3)
    4. 4)
    5. 5)
    6. 6)
    7. 7)
      • A. Picon , M.A. Bereciartua , J.A. Gutierrez , J. Perez . Machine vision in quality control. Development of 3D robotizad laser-scanner. DYNA , 9 , 733 - 742
    8. 8)
      • E. Alpaydın . (2004) Introduction to machine learning (adaptive computation and machine learning).
    9. 9)
      • C.M. Bishop . (2006) Pattern recognition and machine learning.
    10. 10)
      • R.O. Duda , P.E. Hart , D.G. Stork . Pattern classification.
    11. 11)
    12. 12)
      • L.I. Kuncheva . (2004) Combining pattern classifiers: methods and algorithms.
    13. 13)
    14. 14)
      • Boehnke, K.E.: `Hierarchical object localization for robotic bin picking', 2008, PhD, Faculty of Electronics and Telecommunications. Politehnica University of Timisoara, Romania.
    15. 15)
      • R.C. Gonzales , R.E. Woods . (1993) Digital image processing.
    16. 16)
      • Tellaeche, A.: `Técnicas inteligentes basadas en percepción visual aplicadas a la agricultura de precisión', 2008, PhD, Universidad Nacional de Educación a Distancia, Madrid, España.
    17. 17)
      • Ibarguren, A.: `Arquitectura de dos capas para el reconocimiento del lenguaje de signos: Gestos y Movimiento', 2008, PhD, Universidad del Pais Vasco, San Sebastián, España.
    18. 18)
      • N.R. Draper . (1966) Applied regression analysis.
    19. 19)
    20. 20)
      • G. Pajares , J.M. De la Cruz . (2007) Visión por computador: imágenes digitales y aplicaciones.
    21. 21)
    22. 22)
      • Rish, I.: `An empirical study of the Naïve Bayes classifier', In IJCAI 2001 Workshop on Empirical Methods in Artificial Intelligence, 2001.
    23. 23)
    24. 24)
      • O. Pourret , P. Naim , B. Marcot . (2008) Bayesian networks: a practical guide to applications.
    25. 25)
      • Pearl, J.: `Bayesian networks: a model of self-activated memory for evidential reasoning', Proc. Seventh Conf. Cognitive Science Society, University of California, 1985, Irvine, CA, USA, p. 329–334.
    26. 26)
      • Friedman, N., Goldszmidt, M.: `Building classifiers using Bayesian networks', AAAI/IAAI, 1996, Portland, Oregon, 2, p. 1277–1284.
    27. 27)
      • E. Castillo , J.M. Gutiérrez , A.S. Hadi . (1997) Learning bayesian networks in expert systems and probabilistic network models.
    28. 28)
      • F.V. Jensen , T.D. Nielsen . (2007) Bayesian networks and decision graphs.
    29. 29)
      • J. Pearl . (1988) Probabilistic reasoning in intelligent systems: networks of plausible inference.
    30. 30)
      • B.V. Dasarathy . (1991) Nearest neighbor (NN) norms: NN pattern classification techniques.
    31. 31)
      • G. Shakhnarovich , T. Darrel , P. Indyk . (2005) Nearest-neighbor methods in learning and vision.
    32. 32)
    33. 33)
    34. 34)
      • J.R. Quinlan . (1993) C4.5: programs for machine learning.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cvi.2010.0019
Loading

Related content

content/journals/10.1049/iet-cvi.2010.0019
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address