http://iet.metastore.ingenta.com
1887

Improving Harris corner selection strategy

Improving Harris corner selection strategy

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Computer Vision — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

This study describes a corner selection strategy based on the Harris approach. Corners are usually defined as interest points for which intensity variation in the principal directions is locally maximised, as response from a filter given by the linear combination of the determinant and the trace of the autocorrelation matrix. The Harris corner detector, in its original definition, is only rotationally invariant, but scale-invariant and affine-covariant extensions have been developed. As one of the main drawbacks, corner detector performances are influenced by two user-given parameters: the linear combination coefficient and the response filter threshold. The main idea of the authors' approach is to search only the corners near enhanced edges and, by a z-score normalisation, to avoid the introduction of the linear combination coefficient. Combining these strategies allows a fine and stable corner selection without tuning the method. The new detector has been compared with other state-of-the-art detectors on the standard Oxford data set, achieving good results showing the validity of the approach. Analogous results have been obtained using the local detector evaluation framework on non-planar scenes by Fraundorfer and Bischof.

References

    1. 1)
      • Schaffalitzky, F., Zisserman, A.: `Multi-view matching for unordered image sets, or “How do I organize my holiday snaps?” ', European Conf. on Computer Vision, 2002, p. 414–431.
    2. 2)
      • R. Hartley . (2003) Multiple view geometry in computer vision.
    3. 3)
      • Brown, M., Lowe, D.G.: `Recognizing panoramas', Int. Conf. on Computer Vision, 2003, p. 1218–1225.
    4. 4)
      • Mikolajczyk, K., Leibe, B.: `Local features for object class recognition', Int. Conf. on Computer Vision, 2005, p. 1792–1799.
    5. 5)
      • Lowe, D.G.: `Object recognition from local scale-invariant features', Int. Conf. on Computer Vision, 1999, p. 1150–1157.
    6. 6)
    7. 7)
    8. 8)
    9. 9)
      • H. Moravec . (1980) Obstacle avoidance and navigation in the real world by a seeing robot rover.
    10. 10)
      • Harris, C., Stephens, M.: `A combined corner and edge detector', Alvey Vision Conf., 1988, p. 147–151.
    11. 11)
      • W. Förstner . A feature-based correspondence algorithm for image matching. Int. Arch. Photogram. Remote Sens. , 150 - 166
    12. 12)
      • Shi, J., Tomasi, C.: `Good features to track', IEEE Conf. on Computer Vision and Pattern Recognition, 1994, p. 593–600.
    13. 13)
      • Kenney, C.S., Zuliani, M., Manjunath, B.S.: `An axiomatic approach to corner detection', IEEE Computer Society Conf. on Computer Vision and Pattern Recognition, 2005, p. 191–197.
    14. 14)
    15. 15)
    16. 16)
    17. 17)
    18. 18)
      • Lindeberg, T.: `Junction detection with automatic selection of detection scales and localization scales', First Int. Conf. on Image Processing, 1994, p. 924–928.
    19. 19)
      • Parida, L., Geiger, D., Hummel, R.A.: `Kona – a multi-junction detector using minimum description length principle', First Int. Workshop on Energy Minimization Methods in Computer Vision and Pattern Recognition, 1997, p. 51–65.
    20. 20)
    21. 21)
      • Beaudet, P.R.: `Rotationally invariant image operators', Int. Joint Conf. on Pattern Recognition, 1978, p. 578–583.
    22. 22)
    23. 23)
    24. 24)
      • Matas, J., Chum, O., Urban, M., Pajdla, T.: `Robust wide baseline stereo from maximally stable extremal regions', British Machine Vision Conf., 2002, p. 384–393.
    25. 25)
      • Kadir, T., Zisserman, A., Brady, M.: `An affine invariant salient region detector', European Conf. on Computer Vision, 2004, p. 345–457.
    26. 26)
    27. 27)
      • Moreels, P., Perona, P.: `Evaluation of features detectors and descriptors based on 3d objects', Int. Conf. on Computer Vision, 2005, p. 800–807.
    28. 28)
      • Fraundorfer, F., Bischof, H.: `A novel performance evaluation method of local detectors on non-planar scenes', Workshop on Empirical Evaluation Methods in Computer Vision, 2005.
    29. 29)
      • Förstner, W., Dickscheid, T., Schindler, F.: `Detecting interpretable and accurate scale-invariant keypoints', Int. Conf. on Computer Vision, 2009, Kyoto, Japan.
    30. 30)
    31. 31)
      • Dickscheid, T., Förstner, W.: `Evaluating the suitability of feature detectors for automatic image orientation systems', Int. Conf. on Computer Vision Systems, 2009, Liege, Belgium.
    32. 32)
      • T. Lindeberg . (1994) Scale-space theory in computer vision.
    33. 33)
      • K. Mikolajczyk , T. Tuytelaars , C. Schmid . Affine Covariant Features.
    34. 34)
      • F. Fraundorfer , H. Bischof . Local detector evaluation.
    35. 35)
      • K. Mikolajczyk . (2002) Detection of local features invariant to affines transformations.
    36. 36)
      • Klinger, A.: `Patterns and search statistics', Optimizing Methods in Statistics, 1971, p. 303–339.
    37. 37)
      • J. Crowley . (1981) A representation for visual information.
    38. 38)
      • Witkin, A.P.: `Scale space filtering', Int. Joint Conf. on Artificial Intelligence, 1983, p. 1019–1023.
    39. 39)
    40. 40)
      • Baumberg, A.: `Reliable feature matching across widely separated views', IEEE Conf. on Computer Vision and Pattern Recognition, 2000, p. 774–781.
    41. 41)
      • M.H. DeGroot , M.J. Schervish . (2001) Probability and statistics.
    42. 42)
      • Crowley, J.L., Riff, O., Piater, J.: `Fast computation of characteristic scale using a half octave pyramid', Int. Workshop on Cognitive Computing, 2002.
    43. 43)
      • R. Sedgewick . (1990) Algorithms in C.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cvi.2009.0127
Loading

Related content

content/journals/10.1049/iet-cvi.2009.0127
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address