© The Institution of Engineering and Technology
This study proposes a novel fast stereo matching algorithm via semi-global energy optimisation, which achieves a considerable improvement in efficiency for just a small price in accuracy. Based on some assumptions, the authors discover that at most two disparity candidates for each scanline segment of reference image can be extracted. With this observation, the authors present a disparity candidate extraction algorithm. This algorithm constructs an energy function based on colour consistency and restrictions between region boundaries. In this approach, the energy function is optimised via the graph-cuts technique, and the pixels involved are only those positioned on region boundaries, which results in greatly reduced vertex number in the constructed graph and subsequently improved efficiency. After that, a simple partial occlusions handling is conducted as a post-processing to enhance the accuracy of the final disparity map, by selecting a right disparity for each segment from extracted candidates. The performances of our method are demonstrated by experiments on the Middlebury test set.
References
-
-
1)
-
D. Sharstein ,
R. Szeliski
.
A taxonomy and evaluation of dense two-frame stereo correspondence algorithms.
Int. J. Comput. Vis.
,
7 -
42
-
2)
-
Boykov, Y., Veksler, O., Zabih, R.: `Markov random fields with efficient approximations', Proc. IEEE Int. Conf. Pattern Analysis and Machine Intelligence, 1998, p. 648–655.
-
3)
-
V. Kolmogorov ,
R. Zabih
.
What energy functions can be minimized via graph cuts.
Trans. Pattern Anal. Mach. Intell.
,
2 ,
147 -
159
-
4)
-
Klaus, A., Sormann, M., Karner, K.: `Segment-based stereo matching using belief propagation and a self-adapting dissimilarity measure', Proc. IEEE Int. Conf. Pattern Recognition, 2006, p. 15–18.
-
5)
-
Sun, J., Shum, H.Y., Zheng, N.N.: `Stereo matching using belief propagation', Proc. European Conf. Computer Vision, 2002, p. 510–524.
-
6)
-
P.F. Felzenszwalb ,
D.P. Huttenlocher
.
Efficient belief propagation for early vision.
Int. J. Comput. Vis.
,
1 ,
41 -
54
-
7)
-
M. Gong ,
Y.H. Yang
.
Real-time stereo matching using orthogonal reliability-based dynamic programming.
IEEE Trans. Image Proccess.
,
3 ,
879 -
884
-
8)
-
Veksler, O.: `Stereo correspondence by dynamic programming on a tree', Proc. IEEE Int. Conf. Computer Vision and Pattern Recognition, 2005, p. 384–390.
-
9)
-
A. Criminisi ,
J. Shotton ,
A. Blake
.
Efficient dense stereo with occlusions for new view-synthesis by four-state dynamic programming.
Int. J. Comput. Vis.
,
1 ,
89 -
110
-
10)
-
Wang, L., Liao, M., Gong, M.: `High-quality real-time stereo using adaptive cost aggregation and dynamic programming', Proc. Third Int. Symp. 3D Data Processing, Visualization, and Transmission, 2006, p. 798–805.
-
11)
-
Yang, Q., Engels, C., Akbarzadeh, A.: `Near real-time stereo for weakly-textured scenes', Proc. British Machine Vision Conf., 2008.
-
12)
-
Tombari, F., Mattoccia, S., Stefano, L.D.: `Near real-time stereo based on effective cost aggregation', Proc. IEEE Int. Conf. Pattern Recognition, 2008, p. 1–4, 8–11.
-
13)
-
M. Gong ,
R. Yang ,
L. Wang
.
A performance study on different cost aggregation approaches used in real-time stereo matching.
Int. J. Comput. Vis.
,
2 ,
283 -
296
-
14)
-
Veksler, O.: `Reducing search space for stereo correspondence with graph cuts', Proc. British Machine Vision Conf., 2006, p. 709–718.
-
15)
-
Y. Boykov ,
V. Kolmogorov
.
An experimental comparison of min-cut/max-flow algorithms for energy minimization in vision.
IEEE Trans. Pattern Anal. Mach. Intell.
,
9 ,
1124 -
1137
-
16)
-
M. Ansari ,
L. Masmoudi ,
A. Bensrhair
.
A new regions matching for color stereo images.
Pattern Recog. Lett.
,
13 ,
1679 -
1687
-
17)
-
S. Birchfield ,
C. Tomasi
.
A pixel dissimilarity measure that is insensitive to image sampling.
IEEE Trans. Pattern Anal. Mach. Intell.
,
4 ,
401 -
406
-
18)
-
Veksler, O.: `Efficient graph-based energy minimization methods in computer vision', 1999, PhD, Cornell University.
-
19)
-
Wang, Z., Zheng, Z.: `A region based stereo matching algorithm using cooperative optimization', Proc. IEEE Int. Conf. Computer Vision and Pattern Recognition, 2008, p. 887–894.
-
20)
-
K.J. Yoon ,
I.S. Kweon
.
Adaptive support-weight approach for correspondence search.
Trans. Pattern Anal. Mach. Intell.
,
4 ,
650 -
656
-
21)
-
Kolmogorov, V., Zabih, R.: `Multi-camera scene reconstruction via graph cuts', Proc. European Conf. Computer Vision, 2002, p. 82–96.
-
22)
-
Kim, J., Kolmogorov, V., Zabih, R.: `Visual correspondence using energy minimization and mutual information', Proc. IEEE Int. Conf. Computer Vision, 2003, p. 1033–1042.
-
23)
-
Kolmogorov, V.: `Graph based algorithms for scene reconstruction from two or more views', 2004, PhD, Cornell University.
-
24)
-
D. Comaniciu ,
P. Meer
.
Mean shift: a robust approach toward feature space analysis.
IEEE Trans. Pattern Anal. Mach. Intell.
,
5 ,
603 -
619
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cvi.2009.0105
Related content
content/journals/10.1049/iet-cvi.2009.0105
pub_keyword,iet_inspecKeyword,pub_concept
6
6