http://iet.metastore.ingenta.com
1887

Combining classifiers through fuzzy cognitive maps in natural images

Combining classifiers through fuzzy cognitive maps in natural images

For access to this article, please select a purchase option:

Buy article PDF
$19.95
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Computer Vision — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

A new automatic hybrid classifier for natural images by combining two base classifiers through the fuzzy cognitive maps (FCMs) approach is presented in this study. The base classifiers used are fuzzy clustering (FC) and the parametric Bayesian (BP) method. During the training phase, different partitions are established until a valid partition is found. Partitioning and validation are two automatic processes based on validation measurements. From a valid partition, the parameters of both classifiers are estimated. During the classification phase, FC provides for each pixel the supports (membership degrees) that determine which cluster the pixel belongs to. These supports are punished or rewarded based on the supports (probabilities) provided by BP. This is achieved through the FCM approach, which combines the different supports. The automatic strategy and the combined strategy under the FCM framework make up the main findings of this study. The analysis of the results shows that the performance of the proposed method is superior to other hybrid methods and more accurate than the single usage of existing base classifiers.

References

    1. 1)
      • R.O. Duda , P.E. Hart , D.G. Stork . Pattern classification.
    2. 2)
      • H. Zimmermann . (2001) Fuzzy set theory and its applications.
    3. 3)
      • A.K. Tsardias , K.G. Margaritis . Cognitive mapping and certainty neuron fuzzy cognitive maps. Inf. Sci. , 109 - 130
    4. 4)
      • A.K. Tsardias , K.G. Margaritis . An experimental study of the dynamics of the certainty neuron fuzzy cognitive maps. Neurocomputing , 95 - 116
    5. 5)
      • B. Kosko . Fuzzy cognitive maps. Int. J. Man Mach. Stud. , 65 - 75
    6. 6)
      • B. Kosko . (1992) Neural networks and fuzzysystems: a dynamical systemsapproach to machine intelligence.
    7. 7)
      • Y. Miao , Z.Q. Liu . On causal inference in fuzzy cognitive maps. IEEE Trans. Fuzzy Syst. , 1 , 107 - 119
    8. 8)
      • R.M. Valdovinos , J.S. Sánchez , R. Barandela , J.S. Marques , N. Pérez de la Blanca , P. Pina . (2005) Dynamic and static weighting in classifier fusion, Pattern recognition and image analysis.
    9. 9)
    10. 10)
      • Hanmandlu, M., Madasu, V.K., Vasikarla, S.: `A fuzzy approach to texture segmentation', Proc. IEEE Int. Conf. Information Technology: Coding and Computing (ITCC'04), 2004, The Orleans, Las Vegas, Nevada, USA, p. 636–642.
    11. 11)
      • R. Rud , M. Shoshany , V. Alchanatis , Y. Cohen . Application of spectral features' ratios for improving classification in partially calibrated hyperspectral imagery: a case study of separating Mediterranean vegetation species. J. Real-Time Image Process. , 143 - 152
    12. 12)
      • S. Kumar , J. Ghosh , M.M. Crawford . Best-bases feature extraction for pairwise classification of hyperspectral data. IEEE Trans. Geosci. Remote Sens. , 7 , 1368 - 1379
    13. 13)
      • Yu, H., Li, M., Zhang, H.J., Feng, J.: `Color texture moments for content-based image retrieval', Proc. Int. Conf. Image Processing, 2002, 3, p. 24–28.
    14. 14)
      • P. Maillard . Comparing texture analysis methods through classification. Photogram. Eng. Remote Sens. , 4 , 357 - 367
    15. 15)
    16. 16)
      • T. Wagner , B. Jähne , H. Hauβecker , P. Geiβler . (1999) Texture analysis, Handbook of computer vision and applications.
    17. 17)
      • G. Smith , I. Burns . Measuring texture classification algorithms. Pattern Recognit. Lett. , 1495 - 1501
    18. 18)
      • A. Dr.imbarean , P.F. Whelan . Experiments in colour texture analysis. Pattern Recognit. Lett. , 4 , 1161 - 1167
    19. 19)
      • Kong, Z., Cai, Z.: `Advances of research in fuzzy integral for classifier's fusion', Proc. Eighth ACIS Int. Conf. Software Engineering, Artificial Intelligence, Networking and Parallel/Distributed Computing, 2007, 2, p. 809–814.
    20. 20)
    21. 21)
      • S. Kumar , J. Ghosh , M.M. Crawford . Hierarchical fusion of multiple classifiers for hyperspectral data analysis. Pattern Anal. Appl. , 210 - 220
    22. 22)
    23. 23)
      • Cao, J., Shridhar, M., Ahmadi, M.: `Fusion of classifiers with fuzzy integrals', Proc. Third Int. Conf. Document Analysis and Recognition (ICDAR'95), 1995, 1, p. 108–111.
    24. 24)
      • D. Partridge , N. Griffith . Multiple classifier systems: software engineered, automatically modular leading to a taxonomic overview. Pattern Anal. Appl. , 180 - 188
    25. 25)
      • D. Deng , J. Zhang . Combining multiple precision-boosted classifiers for indoor-outdoor scene classification. Inf. Technol. Appl. , 720 - 725
    26. 26)
      • L.A. Alexandre , A.C. Campilho , M. Kamel . On combining classifiers using sum and product rules. Pattern Recognit. Lett. , 1283 - 1289
    27. 27)
      • L.I. Kuncheva . (2004) Combining pattern classifiers: methods and algorithms.
    28. 28)
      • Stach, W., Kurgan, L., Pedrycz, W., Reformat, M.: `Evolutionary development of fuzzy cognitive maps', Proc. IEEE Conf. Fuzzy Syst., 2005, p. 619–624.
    29. 29)
      • Q. Cheng , Z.T. Fang . The stability problem for fuzzy bidirectional associative memories. Fuzzy Sets Syst. , 83 - 90
    30. 30)
      • Martchenko, A.S., Ermolov, I.L., Groumpos, P.P., Poduraev, J.V., Stylios, C.D.: `Investigating stability analysis issues for fuzzy cognitive maps', 11thMediterranean Conf. Control and Automation, 2003, p. 619–624.
    31. 31)
      • J. Aguilar . A survey about fuzzy cognitive maps papers. Int. J. Comput. Cogn. , 2 , 27 - 33
    32. 32)
      • A. Frank , A. Asuncion . UCI machine learning repository.
    33. 33)
      • J. Bezdek . (1981) Pattern recognition with fuzzy objective function algorithms.
    34. 34)
      • B. Balasko , J. Abonyi , B. Feil . (2008) Fuzzy clústering and data analysis toolbox for use with Matlab.
    35. 35)
      • Z. Volkovich , Z. Barzily , L. Morozensky . A statistical model of cluster stability. Pattern Recognit. , 7 , 2174 - 2188
    36. 36)
      • B.G. Buchanan , E.H. Shorliffe . (1984) Rule-based expert systems. The MYCIN experiments of the Stanford Heuristic Programming Project.
    37. 37)
      • E.H. Shorliffe . (1976) Computer-based medical consultations: MYCIN.
    38. 38)
      • A.K. Tsardias , K.G. Margaritis . The MYCIN certainty factor handling as uniform operator and its use as threshold function in artificial neurons. Fuzzy Sets Syst. , 263 - 274
    39. 39)
    40. 40)
      • R.R. Yager . On ordered weighted averaging aggregation operators in multicriteria decision making. IEEE Trans. Syst. Man Cybern. , 1 , 183 - 190
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cvi.2008.0023
Loading

Related content

content/journals/10.1049/iet-cvi.2008.0023
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address