Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

Continued fractions approximation of the impulse response of fractional-order dynamic systems

Continued fractions approximation of the impulse response of fractional-order dynamic systems

For access to this article, please select a purchase option:

Buy article PDF
$19.95
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Control Theory & Applications — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Noninteger (fractional)-order controllers are recognised to guarantee better closed-loop performance and robustness with respect to conventional integer order controllers. But irrational transfer functions make time-domain analysis and simulation much difficult. A systematic approach is proposed here for inverting the transfer function of fractional systems of commensurate order. The approach is based on the continued fractions expansion to approximate irrational transfer functions by minimum-phase, stable, rational functions, which can be easily transformed in the time-domain. The accuracy of the designed low-order approximation is shown by simulation results.

References

    1. 1)
    2. 2)
      • M. Abramowitz , I.A. Stegun . (1964) Handbook of mathematical functions with formulas, graphs, and mathematical tables.
    3. 3)
    4. 4)
      • A. Oustaloup , B. Mathieu , P. Lanusse . The CRONE control of resonant plants: application to a flexible transmission. Eur. J. Contr. , 2 , 113 - 121
    5. 5)
      • S.C. Dutta Roy . On the realization of a constant-argument immittance of fractional operators. IEEE Trans. on Circuit Theory , 3 , 264 - 274
    6. 6)
      • I. Podlubny . (1999) Fractional differential equations.
    7. 7)
      • J.A. Tenreiro Machado . Analysis and design of fractional-order digital control systems. J. Syst. Analy., Modell. Simul. , 107 - 122
    8. 8)
      • B.M. Vinagre , I. Podlubny , A. Hernandez , V. Feliu . Some approximations of fractional order operators used in control theory and applications. Fractional Calculus Appl. Anal. , 3 , 231 - 248
    9. 9)
      • B.J. West , M. Bologna , P. Grigolini . (2003) Physics of fractal operators.
    10. 10)
      • Chen, Y.Q., Vinagre, B.M., Podlubny, I.: `A new discretization method for fractional order differentiators via continued fraction expansion', Proc. ASME 2003 Design Eng. Technical Conf., 2–6 September 2003, Chicago, IL, USA, p. 761–769.
    11. 11)
      • H.E. Jones , B.A. Shenoi . Maximally flat lumped-element approximation to a fractional operator immittance function. IEEE Trans. Circuit Theory , 1 , 125 - 128
    12. 12)
    13. 13)
      • S.G. Samko , A.A. Kilbas , O.I. Marichev . (2002) Fractional integrals and derivatives. Theory and applications.
    14. 14)
    15. 15)
      • K.B. Oldham , J. Spanier . (1974) The fractional calculus: integrations and differentiations of arbitrary order.
    16. 16)
      • O.P.D. Cutteridge . The stability criteria for linear systems. Institution Electr. Eng., Monograph No. 328 M , 125 - 132
    17. 17)
      • A. Oustaloup . (1995) La Dérivation non Entière: Théorie, Synthèse et Applications.
    18. 18)
    19. 19)
      • P. Arena , R. Caponetto , L. Fortuna , D. Porto , L.O. Chua . (2000) Nonlinear noninteger order circuits and systems. An introduction, World scientific series on nonlinear science, Series A.
    20. 20)
    21. 21)
      • M. Caputo . Linear models of dissipation whose Q is almost frequency independent – Part II. Geophys. J. Roy. Astron. Soc. , 529 - 539
    22. 22)
      • H.S. Wall . (1948) Analytical theory of continued fractions.
    23. 23)
      • M.D. Ortigueira . Introduction to fractional linear systems. Part 1: continuous-time case. IEE Proc. Vision, Image Signal Process. , 1 , 62 - 70
    24. 24)
    25. 25)
      • Y.-C. Cheng , C. Hwang . Use of the Lambert W function for time-domain analysis of feedback fractional delay systems. IEE Proc., Control Theory Appl. , 2 , 167 - 174
    26. 26)
      • K. Matsuda , H. Fujii . H∞ optimized wave-absorbing control: analytical and experimental results. J. Guidance, Contr. Dyn. , 6 , 1146 - 1153
    27. 27)
    28. 28)
      • J. Spanier , K.B. Oldham . (1987) An atlas of functions.
    29. 29)
      • R. Gorenflo , F. Mainardi , A. Carpinteri , F. Mainardi . (1997) Fractional calculus: integral and differential equations of fractional order, Fractals and fractional calculus in continuum mechanics.
    30. 30)
      • Y.Q. Chen , K.L. Moore . Discretization schemes for fractional-order differentiators and integrators. IEEE Trans. Circuits Syst. I. Fundamental Theory Appl. , 3 , 363 - 367
    31. 31)
      • Lurie, B.J.: `Three-parameter tunable tilt-integral-derivative (TID) controller', US Patent US5371670, 1994.
    32. 32)
      • J.A. Tenreiro Machado . Discrete-time fractional-order controllers. J. Fractional Calculus Appl. Anal. , 1 , 47 - 66
    33. 33)
    34. 34)
    35. 35)
      • I.S. Gradshteyn , I.M. Ryzhik . (2000) Tables of integrals, series, and products.
    36. 36)
      • A. Oustaloup , F. Levron , B. Mathieu , F.M. Nanot . Frequency-band complex noninteger differentiator: characterization and synthesis. IEEE Trans. Circuit Syst. I: Fundamental Theory Appl. , 1 , 25 - 39
    37. 37)
    38. 38)
      • A.N. Khovanskii , L.A. Lyusternik , A.R. Yanpol'skii . (1965) Continued fractions, Mathematical analysis – functions, limits, series, continued fractions’, ‘International series monographs in pure and applied mathematics.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cta_20070205
Loading

Related content

content/journals/10.1049/iet-cta_20070205
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address