© The Institution of Engineering and Technology
Manipulating payloads with gantry cranes is challenging due to possible undesirable load pendulations induced by the crane motion and external perturbations. When the work environment is cluttered with obstacles, the problem gets increasingly difficult, which must be avoided, resulting in the need for appropriate load trajectory planning and more cautious craning strategy. The trajectory is first sketched by a series of points in the work space, and then approximated by spline functions. A resttorest load motion along the specified trajectory is then imposed, resulting in one coordinated manoeuvre that omits the obstacles. The control of crane executing the load motion is viewed as an inverse dynamics problem, strongly influenced by the underactuated nature of the system. The arising governing differentialalgebraic equations enable one for the analysis of crane dynamics and synthesis of its control in the specified motion. The openloop control obtained this way is enhanced by a closedloop control with feedback of the actual errors in load position to provide stable tracking of the reference trajectory in presence of perturbations and modelling inconsistencies. Some results of numerical simulations are reported.
References


1)

Y. Rosenfeld ,
A. Shapira
.
Automation of existing tower cranes: economic and technological feasibility.
Autom. Construct.
,
285 
298

2)

Forest, C., Frakes, D., Singhose, W.: `Inputshaped control of gantry cranes: simulation and curriculum development', Proc.18th ASME Biennial Conf. Mech. Vibrat. Noise, September 2001, Pittsburgh, USA, 6B, p. 1877–1884.

3)

E.M. AbdelRahman ,
A.H. Nayfeh ,
Z.N. Masoud
.
Dynamics and control of cranes: a review.
J. Vib. Control
,
863 
908

4)

R.M. Ghigliazza ,
P. Holmes
.
On the dynamics of cranes, or spherical pendula with moving supports.
Int. J. NonLinear Mech.
,
1211 
1121

5)

H.H. Lee
.
Modeling and control of a threedimensional overhead crane.
J. Dynam. Syst., Measure. Control
,
471 
476

6)

O. Sawodnya ,
H. Aschemannb ,
S. Lahres
.
An automated gantry crane as a large workspace robot.
Control Eng. Pract.
,
1323 
1338

7)

H. Aschemann
.
(2002)
Optimale Trajektrienplanung sowie modelgestützte Steuerung für einen Brückenkran.

8)

J.W. Auering ,
H. Troger
.
Time optimal control of overhead cranes with hoisting of the load.
Automatica
,
437 
446

9)

M.W. Noakes ,
J.F. Jansen
.
Generalized inputs for dampedvibration control of suspended payloads.
Robot. Auton. Syst.
,
199 
205

10)

W. Singhose ,
L. Porter ,
M. Kenison ,
E. Kriikku
.
Effects of hoisting on the input shaping control of gantry cranes.
Control Eng. Practice
,
1159 
1165

11)

H.H. Lee
.
A new approach for the antiswing control of overhead cranes with highspeed load hoisting.
Int. J. Control
,
1493 
1499

12)

Omar, H.M.: `Control of gantry and tower cranes', 2003, PhD, Virginia Polytechnic Institute, Blacksburg, Virginia, USA.

13)

M.F. Daqaq ,
Z.N. Masoud
.
Nonlinear inputshaping controller for quayside container cranes.
Nonlin. Dyn.
,
149 
170

14)

Z.N. Masoud ,
M.F. Daqaq
.
A graphical approach to inputshaping control design for container cranes with hoist.
IEEE Trans. Control Syst. Technol.
,
1070 
1077

15)

Z.N. Masoud ,
A.H. Nayfeh ,
N.A. Nayfeh
.
Sway reduction on quayside container cranes using delayed feedback controller: simulations and experiments.
J. Vib. Control
,
1103 
1122

16)

H.M. Omar ,
A.H. Nayfeh
.
Antiswing control of gantry and tower cranes using fuzzy and timedelayed feedback with friction compensation.
Shock Vib.
,
73 
89

17)

M.W. Spong ,
B. Siciliano ,
K.P. Valavanis
.
(1998)
Underactuated mechanical systems, Control problems in robotics and automation.

18)

M. Fliess ,
J. Lévine ,
P. Martin ,
P. Rouchon
.
Flatness and defect of nonlinear systems: introductory theory and examples.
Int. J. Control
,
1327 
1361

19)

P. Rouchon
.
Flatness based control of oscillators.
ZAMM
,
411 
421

20)

T. Heyden ,
C. Woernle
.
Dynamics and flatnessbased control of kinematically undetermined cable suspension manipulator.
Multibody Syst. Dyn.
,
155 
177

21)

V.I. Kirgetov
.
The motion of controlled mechanical systems with prescribed constraints (servoconstraints).
PMM
,
433 
466

22)

A.H. Bajodah ,
D.H. Hodges ,
Y.H. Chen
.
Inverse dynamics of servoconstraints based on the generalized inverse.
Nonlin. Dyn.
,
179 
196

23)

W. Blajer ,
K. Kołodziejczyk
.
A geometric approach to solving problems of control constraints: theory and a DAE framework.
Multibody Syst. Dyn.
,
343 
364

24)

A. Rosen
.
Applying the Lagrange method to solve problems of control constraints.
J. Appl. Mech.
,
1013 
1015

25)

C.H. Reinsch
.
Smoothing by spline functions.
Numerische Mathematik
,
177 
183

26)

R.A. Wehage ,
E.J. Haug
.
Generalized coordinate partitioning for dimension reduction in analysis of constrained dynamic systems.
J. Mech. Design
,
1058 
1064

27)

U.M. Ascher ,
L.R. Petzold
.
(1988)
Computer methods for ordinary differential equations and differentialalgebraic equations.

28)

K.E. Brenan ,
S.L. Campbell ,
L.R. Petzold
.
(1996)
Numerical solution of initialvalue problems in differentialalgebraic equations.

29)

C.W. Gear
.
Differentialalgebraic equation index transformations.
SIAM J. Sci. Stat. Comput.
,
39 
47

30)

C.W. Gear ,
L.R. Petzold
.
ODE methods for the solution of differential/algebraic equations.
SIAM J. Numer. Anal.
,
716 
728

31)

D. Bestle ,
H. Ulbrich ,
W. Günthner
.
(2005)
Design of a laboratory crane for testing control approaches, IUTAM symp. on vibration control of nonlinear mechanisms and structures, series: solid mechanics and its applications.
http://iet.metastore.ingenta.com/content/journals/10.1049/ietcta_20060439
Related content
content/journals/10.1049/ietcta_20060439
pub_keyword,iet_inspecKeyword,pub_concept
6
6