http://iet.metastore.ingenta.com
1887

Robust observer with sliding mode estimation for nonlinear uncertain systems

Robust observer with sliding mode estimation for nonlinear uncertain systems

For access to this article, please select a purchase option:

Buy article PDF
$19.95
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Control Theory & Applications — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

To handle the state estimation of a nonlinear system perturbed by a scalar disturbance distributed by a known nonlinear vector, we incorporate a sliding mode term into a nonlinear observer to realise a robust nonlinear observer. By linking the observability of the unknown input to the output measurement, the so-called matching condition is avoided. The measurable output estimation error is the sliding surface. In the sliding mode, the reduced-order error system is free from the disturbance, and the convergence of the estimation error dynamics is proven. The unknown input/disturbance is estimated from the sliding mode. Under a Lipschitz condition for the nonlinear part, the nonlinear observers are designed under the structural assumption that the system is observable with respect to any control input. The proposed robust nonlinear estimator is applied to state and unknown input estimation of a bioreactor. The simulation results demonstrate the effectiveness of the proposed method.

References

    1. 1)
      • D.G. Luenberger . Observing the state of a linear system. IEEE Trans. Military Electron. , 74 - 80
    2. 2)
      • R.E. Kalman , R.C. Bucy . New results in linear filtering and prediction theory. Trans. ASME , 95 - 108
    3. 3)
    4. 4)
    5. 5)
    6. 6)
    7. 7)
    8. 8)
      • F. Deza , E. Busvelle , J.P. Gauthier , D. Rakotopara . High gain estimation for nonlinear systems. Syst. Control Lett. , 292 - 299
    9. 9)
    10. 10)
    11. 11)
      • V.I. Utkin . (1992) Sliding modes in control and optimizations.
    12. 12)
    13. 13)
      • Misawa, E.A.: `Nonlinear state estimation using sliding mode observers', 1988, Ph.D, Massachusetts Institute of Technology.
    14. 14)
      • Drakunov, S., Utkin, V.: `Sliding mode observers. tutorial', Proc. 34th IEEE Conf. Decision and Control, 1995, New Orleans, LA, p. 3376–3378.
    15. 15)
      • Barbot, J.P., Boukhobza, T., Djemai, M.: `Sliding mode observer for triangular input form', Proc. 35th IEEE Conf. Decision and Control, 1996, Kobe, Japan, p. 1489–1490.
    16. 16)
    17. 17)
    18. 18)
    19. 19)
      • Veluvolu, K.C., Soh, Y.C., Cao, W., Liu, Z.Y.: `Observer with multiple sliding modes for a class of nonlinear uncertain systems', Proc. 24th American Control Conf., June 2005, Portland, USA, p. 2445–2450.
    20. 20)
      • Veluvolu, K.C., Soh, Y.C., Cao, W., Liu, Z.Y.: `Discrete-time sliding mode observer design for a class of uncertain nonlinear systems', Proc. 25th American Control Conf., June 2006, Minneapolis, USA, p. 2605–2610.
    21. 21)
      • K.C. Veluvolu , Y.C. Soh , W. Cao . Robust discrete-time nonlinear sliding mode state estimation of uncertain nonlinear systems. Int. J. Robust Nonlinear Control , 9 , 803 - 828
    22. 22)
    23. 23)
    24. 24)
      • Drakunov, S.V.: `Sliding mode observers based on equivalent control method', Proc. 31st IEEE Conf. Decision and Control, 1992, Tuscon, Arizona, p. 2368–2369.
    25. 25)
      • I. Haskara , U. Ozguner . (1999) Equivalent value filters in disturbance estimation and state observation.
    26. 26)
    27. 27)
    28. 28)
      • F.E. Thau . Observing the state of nonlinear dynamic systems. Int. J. Control , 3 , 471 - 479
    29. 29)
    30. 30)
    31. 31)
      • R. Rajamani , Y.M. Cho . Existence and design of observers for nonlinear systems: relation to distance to unobservability. Int. J. Control , 5 , 717 - 731
    32. 32)
    33. 33)
    34. 34)
      • G. Bastin , D. Dochain . (1990) On-line estimation and adaptive control of bioreactors.
    35. 35)
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cta_20060434
Loading

Related content

content/journals/10.1049/iet-cta_20060434
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address