http://iet.metastore.ingenta.com
1887

Affine Takagi-Sugeno fuzzy modelling algorithm by fuzzy c-regression models clustering with a novel cluster validity criterion

Affine Takagi-Sugeno fuzzy modelling algorithm by fuzzy c-regression models clustering with a novel cluster validity criterion

For access to this article, please select a purchase option:

Buy article PDF
$19.95
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Control Theory & Applications — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

An effective approach is developed to establish affine Takagi-Sugeno (T-S) fuzzy model for a given nonlinear system from its input–output data. Firstly, the fuzzy c-regression model (FCRM) clustering technique is applied to partition the product space of the given input–output data into hyper-plan-shaped clusters. Each cluster is essentially a basis of the fuzzy rule that describes the system behaviour, and the number of clusters is just the number of fuzzy rules. Particularly, a novel cluster validity criterion for FCRM is set up to choose the appropriate number of clusters (rules). Once the number of clusters is determined, the consequent parameters of each IF-THEN rule are directly obtained from the functional cluster representatives (affine linear functions). The antecedent fuzzy sets of each IF-THEN fuzzy rule are acquired by projecting the fuzzy partitions matrix U onto the axes of individual antecedent variable to obtain point-wise defined fuzzy sets and to approximate these point-wise defined fuzzy sets by normal bell-shaped membership functions. Additionally, a check and repartition algorithm is suggested to prevent the inappropriate premise structure where separate regions of data shared the same regression model. Finally, the gradient descent algorithm is included to adjust the fuzzy model precisely. An affine T-S fuzzy model with compact IF-THEN rules could thus be generated systematically. Several simulation examples are provided to demonstrate the accuracy and effectiveness of the affine T-S fuzzy modelling algorithm.

References

    1. 1)
      • T. Takagi . Fuzzy identification of systems and its applications to modeling and control. IEEE Trans. Syst., Man Cybern. , 116 - 132
    2. 2)
      • M. Sugeno , G.T. Kang . Structure identification of fuzzy model. Fuzzy Sets Syst. , 1 , 15 - 33
    3. 3)
      • R. Babuska . (1998) Fuzzy modeling for control.
    4. 4)
      • Rovatti, R.: `Takagi-sugeno models as approximators in Sobolev norms: the SISO case', Proc. 5th IEEE Conf. on Fuzzy Systems, 1996, New Orleans, p. 1060–1066.
    5. 5)
      • Fantuzzi, C., Rovatti, R.: `On the approximation capability of the homogeneous takagi-sugeno model', Proc. 5th IEEE Conf. on Fuzzy Systems, 1996, New Orleans, p. 1067–1072.
    6. 6)
      • J.A. Dickerson , B. Kosko . Fuzzy function approximation with ellipsoidal rules. IEEE Trans. Syst., Man Cybern. , 4 , 542 - 560
    7. 7)
    8. 8)
      • A.F.G. Skarmeta , M. Delgado , M.A. Vila . About the use of fuzzy clustering techniques for fuzzy model identification. Fuzzy Sets Syst. , 3 , 179 - 188
    9. 9)
      • T.W. Liao , A.K. Celmins , R.J. Hammell . A fuzzy c-means variant for the generation of fuzzy term sets. Fuzzy Sets Syst. , 2 , 279 - 303
    10. 10)
    11. 11)
    12. 12)
      • L.X. Wang . (1994) Adaptive fuzzy systems and control: design and stability analysis.
    13. 13)
      • Gustafson, E.E., Kessel, W.C.: `Fuzzy clustering with a fuzzy covariance matrix', Proc. IEEE CDC, 1979, San Diego, p. 761–766.
    14. 14)
    15. 15)
      • F. Hoppner , F. Klawonn , R. Kruse , T. Runkler . (1999) Fuzzy cluster analysis, methods for classification, data analysis and image recognition.
    16. 16)
    17. 17)
      • E. Kim , M. Park , S. Ji , M. Park . A new approach to fuzzy modeling. IEEE Trans. Fuzzy Syst. , 3 , 328 - 337
    18. 18)
    19. 19)
      • J.C. Bezdek . Cluster validity with fuzzy set. J. Cybern. , 58 - 72
    20. 20)
      • J. Bezdek . (1981) Pattern recognition with fuzzy objective function algorithms.
    21. 21)
      • X.L. Xie , G.A. Beni . A validity measure for fuzzy clustering. IEEE Trans. Pattern Anal. Machine Intell. , 8 , 841 - 846
    22. 22)
    23. 23)
      • A. Flores-Sintas , J.M. Cadenas , F. Martin . Partition validity and defuzzification. Fuzzy Sets Syst. , 3 , 433 - 447
    24. 24)
    25. 25)
      • L.X. Wang . (1997) A course in fuzzy systems and control.
    26. 26)
      • E. Ruspini . Numerical method for fuzzy clustering. Inf. Sci. , 319 - 350
    27. 27)
      • L. Ljung , T. Soderstrom . (1983) Theory and practice of recursive identification.
    28. 28)
      • K. Hoffman , R. Kunze . (1971) Linear algebra.
    29. 29)
      • R. Kruse , J. Gebhardt , F. Klawonn . (1994) Foundations of fuzzy systems.
    30. 30)
      • G.J. Klir , B. Yuan . (1995) Fuzzy sets and fuzzy logic: theory and applications.
    31. 31)
    32. 32)
      • C.T. Lin , C.S.G. Lee . Reinforcement structure/parameter learning of neural-network based fuzzy logic control system. IEEE Trans. Fuzzy Syst. , 1 , 43 - 63
    33. 33)
      • C.T. Chao , Y.J. Chen , C.C. Teng . Simplification of fuzzy neural system using similarity analysis. IEEE Trans. Syst., Man Cybern., Part B , 2 , 344 - 354
    34. 34)
    35. 35)
    36. 36)
      • G.E.P. Box , G.M. Jenkins . (1970) Time series analysis, forecasting and control.
    37. 37)
    38. 38)
      • W. Pedrycz . An identification algorithm in fuzzy relational systems. Fuzzy Sets Syst. , 153 - 167
    39. 39)
    40. 40)
    41. 41)
      • Y. Lin , G.A. Cunningham . A new approach to fuzzy-neural modeling. IEEE Trans. Fuzzy Syst. , 2 , 190 - 198
    42. 42)
      • L. Wang , R. Langari . Building Seugeno-tpye models using fuzzy discretisation and orthogonal parameter estimation techniques. IEEE Trans. Fuzzy Syst. , 454 - 458
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cta_20060415
Loading

Related content

content/journals/10.1049/iet-cta_20060415
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address