http://iet.metastore.ingenta.com
1887

Robust H control for standard discrete-time singularly perturbed systems

Robust H control for standard discrete-time singularly perturbed systems

For access to this article, please select a purchase option:

Buy article PDF
$19.95
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Control Theory & Applications — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

The state feedback H control problem for standard discrete-time singularly perturbed systems with polytopic uncertainties is considered. Two methods for designing H controllers are given in terms of solutions to a set of linear matrix inequalities, where one of them is with the consideration of improving the upper bound of singular perturbation parameter ε. Moreover, a method of evaluating the upper bound of singular perturbation parameter ε with meeting a prescribed H performance bound requirement is also given. Numerical examples are given to illustrate the effectiveness of the proposed methods.

References

    1. 1)
    2. 2)
    3. 3)
    4. 4)
      • Naidu, D.S., Charalambous, C., Moore, K.L., Abdelrahman, M.A.: `-optimal control of singularly perturbed discrete-time systems and risk-sensitive control', Proc. 33th IEEE Conf. Decision and Control, 1994, Lake Buena Vista, CO, USA, p. 1706–1711.
    5. 5)
    6. 6)
      • W.S. Kafri , E.H. Abed . Stability analysis of discrete-time singularly perturbed systems. IEEE Trans. Circuits Syst. , 848 - 850
    7. 7)
    8. 8)
    9. 9)
      • P.V. Kokotovic , H.K. Khail , J. O'Reilly . (1986) Singular perturbation methods in control: analysis and design.
    10. 10)
    11. 11)
      • L. Cao , H.M. Schwartz . Complementary results on the stability bounds of singularly perturbed systems. IEEE Trans. Autom. Control , 11 , 2017 - 2021
    12. 12)
    13. 13)
    14. 14)
      • L. Cao , H.M. Schwartz . Reduced-order models for feedback stabilization of linear systems with a singular perturbation model,. Asian J. Control , 326 - 336
    15. 15)
    16. 16)
      • H.L. Choi , Y.S. Shin , J.T. Lim . Control of nonlinear singularly perturbed systems using feedback linearisation. IEE Proc. , 91 - 94
    17. 17)
      • B.S. Kim , Y.H. Kim , M.T. Lim . LQG control for nonstandard singularly perturbed discrete-time systems,. J. Dyn. Syst. Meas. Control-Trans. ASME , 860 - 864
    18. 18)
    19. 19)
      • H. Singh , R.H. Brown , D.S. Naidu , J.A. Heinen . Robust stability of singularly perturbed state feedback systems using unified approach. IEE Proc. , 391 - 396
    20. 20)
      • A. Soto-Cota , L.M. Fridman , A.G. Loukianov , J.M. Canedo . Variable structure control of synchronous generator: singularly perturbed analysis. Int. J. Control , 1 - 13
    21. 21)
      • F.C. Sun , Y.N. Hu , H.P. Liu . Stability analysis and robust controller design for uncertain discrete-time singularly perturbed systems. Dyn. Contin. Discrete Impuls. Syst. Ser. B Appl. Algorithms , 849 - 865
    22. 22)
      • Singh, H., Brown, R.H., Naidu, D.S.: `Unified approach to ', Proc. Amer. Contr. Conf., 1999, San Diego, CA, USA, p. 2909–2913.
    23. 23)
      • Singh, H., Naidu, D.S., Nagurka, M.L.: `Unified ', Proc. Amer. Contr. Conf., 2000, Chicago, IL, USA, p. 1847–1851.
    24. 24)
    25. 25)
      • Li, Y., Wang, J.L., Yang, G.-H.: `Sub-optimal linear quadratic control for singularly perturbed systems', Proc. 40th IEEE Conf. Decision and Control, 2001, Orlando, USA, p. 3698–3703.
    26. 26)
      • Y. Li , J.L. Wang , G.H. Yang . Linear quadratic control for singularly perturbed systems. Dyn. Contin. Discrete Impuls. Syst. Ser. B Appl. Algorithms , 29 - 39
    27. 27)
    28. 28)
    29. 29)
      • D. Mustafa , T.N. Davidson . Block bialternate sum and associated stability formula. Automatica , 1263 - 1274
    30. 30)
      • B.S. Chen , C.L. Lin . On the stability bounds of singularly perturbed systems. IEEE Trans. Autom. Control , 1265 - 1270
    31. 31)
      • S. Boyd , L. El Ghaoui , E. Feron , V. Balakrishnan . (1994) Linear matrix inequalities in systems and control theory, SIAM studies in applied mathematics.
    32. 32)
      • S. Boyd , L. Vandenberghe . (2004) Convex optimization.
    33. 33)
      • P. Gahinet , A. Nemirovski , A. Laub , M. Chilali . (1995) LMI control toolbox.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cta_20060234
Loading

Related content

content/journals/10.1049/iet-cta_20060234
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address