Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

Robust strictly dissipative control for discrete singular systems

Robust strictly dissipative control for discrete singular systems

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Control Theory & Applications — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

The problem of strictly dissipative control for discrete singular systems with or without parameter uncertainties is focused. A necessary and sufficient condition in terms of linear matrix inequalities (LMIs) is derived guaranteeing the admissibility and strict dissipativeness of a linear discrete singular system. Then, the existence condition of a state feedback strictly dissipative controller is given by using matrix inequalities (MIs). As for an uncertain discrete singular system, the uncertainties are assumed to be time-invariant and norm-bounded appearing in both the state and input matrices. A sufficient condition is obtained such that the uncertain system is generalised quadratically stable and strictly dissipative. Moreover, a state feedback robust strictly dissipative controller is also constructed by using the solution of MIs.

References

    1. 1)
      • X. Dong , Q. Zhang , K. Guo . Passive control of discrete singular systems. J. Northeastern Univ. (Nat. Sci.) , 4 , 342 - 344
    2. 2)
      • J.C. Willems . Dissipative dynamical systems, part 1: general theory; part 2: linear systems with quadratic supply rate. Arch. Rational Mech. Anal. , 321 - 393
    3. 3)
    4. 4)
      • F. Liu , H. Su , J. Chu . Robust strictly dissipative control for linear discrete time-delay systems. Acta Autom. Sin. , 897 - 903
    5. 5)
      • L. Lee , J.L. Chen . Strictly positive real lemma and absolute stability for discrete-time descriptor systems. IEEE Trans. Circuits Syst. I: Fundamental Theory Appl. , 788 - 794
    6. 6)
      • L. Zhang , J. Lam , S. Xu . On positive realness of descriptor systems. IEEE Trans. Circuits Syst. I: Fundamental Theory Appl. , 401 - 407
    7. 7)
    8. 8)
    9. 9)
    10. 10)
      • Dong, X., Zhang, Q.: `Robust ', 2004 World Congress on Intelligent Control and Automation, 2004, Hangzhou, China, 2, p. 1035–1039.
    11. 11)
      • Rehm, A., Allgower, F.: `An LMI approach toward ', Proc. Am. Control Conf., 2002, Anchorage, AK, p. 614–619.
    12. 12)
    13. 13)
      • L. Dai . (1989) Singular control systems. Lecture notes in control and information sciences.
    14. 14)
      • D.G. Luenberger , A. Arbel . Singular dynamical Leotief systems. Econometrica , 991 - 995
    15. 15)
    16. 16)
      • S. Xu , J. Lam . New positive realness conditions for uncertain discrete descriptor systems: analysis and synthesis. IEEE Trans. Circuits Syst. I: Regular Papers , 9 , 1897 - 1905
    17. 17)
      • Z. Tan , Y.C. Soh , L. Xie . Dissipative control for linear discrete-time systems. Automatica , 1557 - 1564
    18. 18)
      • X. Dong , Q. Zhang . Robust strictly dissipative control for linear singular systems. Control and Decision , 2 , 195 - 198
    19. 19)
    20. 20)
    21. 21)
    22. 22)
      • S. Xu , J. Lam , C. Yang . Robust H∞ control for discrete singular systems with state delay and parameter uncertainty. Dyn. Continuous, Discrete Impulse Syst. B , 539 - 544
    23. 23)
      • D.J. Hill , P.J. Morlan . Connections between finite gain and asymptotical stability. IEEE Trans. Autom. Control , 931 - 936
    24. 24)
      • A. Albert . Conditions for positive and nonnegative definiteness in terms of pseudoinverses. SIAM J. Appl. Math. , 434 - 440
    25. 25)
      • Z. Li , J. Wang , H. Shao . Delay-dependent dissipative control for linear time-delay systems. J. Franklin Inst. , 529 - 542
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cta_20060173
Loading

Related content

content/journals/10.1049/iet-cta_20060173
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address