Precise tracking of a piezoelectric positioning stage via a filtering-type sliding-surface control with chattering alleviation

Access Full Text

Precise tracking of a piezoelectric positioning stage via a filtering-type sliding-surface control with chattering alleviation

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Control Theory & Applications — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

A filtering-type sliding-surface control (FTSSC) design with chattering alleviation compared to the traditional sliding-mode control (SMC) is proposed for precise trajectory tracking of a piezoelectric positioning stage (abbreviated by ‘piezo-stage’). First, considering the dynamics of motion of a mass-spring mechanical system, the differential equations of motion system – which contains the parameters of a linear viscous friction, spring-coefficient, and a nonlinear hysteresis function – are proposed to describe the dynamics of motion of the piezo-stage. Then, the frequency-dependent hysteresis responses from both the proposed equations and the practical piezo-stage are illustrated to validate the equations. Based on the equations proposed, a state-space model is developed in which the applied voltage to the stage is defined as an output of a new control variable. According to the state-space model, the FTSSC design is proposed to provide not only the advantages of the traditional SMC, but also chattering improvement. Using the proposed control approach to the trajectory tracking of the piezo-stage, we can obtain that (a) high-performance tracking response, (b) robustness to system uncertainties and (c) chattering alleviation compared with the traditional SMC. Experimental results are illustrated to validate the proposed control approach for practical applications in trajectory tracking.

Inspec keywords: motion control; filtering theory; variable structure systems; friction; differential equations; tracking; piezoelectric actuators; position control; state-space methods

Other keywords: mass-spring mechanical system; state-space model; piezoelectric positioning stage; nonlinear hysteresis function; filtering type sliding surface control; precise trajectory tracking; motion system; linear viscous friction; differential equations; chattering alleviation

Subjects: Mathematical analysis; Control system analysis and synthesis methods; Signal processing theory; Multivariable control systems; Spatial variables control

References

    1. 1)
      • J.H. Mathews , K.K. Fink . (2004) Numerical methods using matlab.
    2. 2)
      • H.K. Khalil . (1988) Nonlinear systems.
    3. 3)
      • S.E. Lyshevski . (2002) MEMS & NEMS: systems, devices, and structures.
    4. 4)
      • T.S. Low , W. Guo . Modeling of a three-layer piezoelectric bimorph beam with hysteresis. IEEE J. Microelectromech. Syst. , 4 , 230 - 237
    5. 5)
      • S. Cincotti , I. Daneri . A PWL circuit approach to the definition of a ɛ-approximation model of scalar static hysteresis. IEEE Trans. Circuits Syst.–I: Fundamental Theory and Applic. , 9 , 1290 - 1308
    6. 6)
      • A. Reimers , E.D. Torre . Fast Preisach-based magnetization model and fast inverse hysteresis model. IEEE Trans. Mag. , 6 , 3857 - 3866
    7. 7)
    8. 8)
      • J.W. Gardner , V.K. Varadam , O.O. Awadelkarim . (2001) Microsensor, MEMS, and smart devices.
    9. 9)
      • A.J. Fleming , S.O. Reza Moheimani . Control oriented synthesis of high-performance piezoelectric shunt impedances for structural vibration control. IEEE Trans. Control Syst. Technol. , 1 , 98 - 112
    10. 10)
      • W. Gao , J.C. Hung . Variable structure control for nonlinear systems: a new approach. IEEE Trans. Ind. Electron. , 1 , 2 - 22
    11. 11)
      • Y. Bernard , E. Mendes , F. Bouillault . Dynamic hysteresis modeling based on Preisach model. IEEE Trans. Mag. , 2 , 885 - 888
    12. 12)
      • S. Mittal , C.H. Menq . Hysteresis compensation in electromagnetic actuators through Preisach model inversion. IEEE/ASME Trans. Mechatronics , 4 , 394 - 409
    13. 13)
      • Choi, G.S., Kim, H.S., Choi, G.H.: `A study on position control of piezoelectric actuators', Proc. IEEE Int. Symp. on Industrial Electronics, 1997, 3, p. 851–855.
    14. 14)
      • D. Song , C.J. Li . Modeling of piezo actuator's nonlinear and frequency dependent dynamics. Mechatronics , 4 , 391 - 410
    15. 15)
      • S. Cincotti . Dynamic properties of a piece-wise linear circuit model of hysteresis. IEEE Trans. Mag. , 5 , 3320 - 3323
    16. 16)
    17. 17)
      • Wang, Z., Meikote, H., Khorrami, F.: `Robust adaptive friction compensation in servo-drives using position measurement only', Proc. IEEE Int. Conf. on Control Applications, September 2000, p. 178–183.
    18. 18)
      • J.P. Fillard . (1996) Near field optics and nanoscopy.
    19. 19)
      • B. Cannas , S. Cincotti , I. Daneri . A generation of a piece-wise linear circuit model of hysteresis. IEEE Trans. Mag. , 2 , 901 - 904
    20. 20)
      • Shyu, K.K., Hung, J.C.: `Total sliding mode trajectory control of robotic manipulators', Proc. IEEE IECON'99, 1999, 3, p. 1062–1066.
    21. 21)
    22. 22)
      • Goldfarb, M., Celanovic, N.: `Behavioral implications of piezoelectric stack actuators for control of micromanipulation', Proc. IEEE Int. Conf. on Robotics Automation, April 1996, p. 226–231.
    23. 23)
    24. 24)
    25. 25)
      • T.R. Hsu . (2002) MEMS and microsystems: design and manufacture.
    26. 26)
      • V.I. Utkin . (1992) Sliding modes in control and optimization.
    27. 27)
      • T.L. Chern , Y.C. Wu . An optimal variable structure control with integral compensation for electrohydraulic servo control system. IEEE Trans. Ind. Electron. , 5 , 460 - 463
    28. 28)
      • M.A. Paesler , P.J. Moyer . (1996) Near-field optics: theory, instrumentation, and applications.
    29. 29)
      • Tan, H., Hung, J.Y.: `Integral augmented VSC: design and testing', Proc. IEEE IECON'93, Nov 1993, 3, p. 1956–1961.
    30. 30)
    31. 31)
      • J. Stroscio , K. Kaiser . (1993) Scanning tunneling microscopy.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cta_20060151
Loading

Related content

content/journals/10.1049/iet-cta_20060151
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading